• Title/Summary/Keyword: SA106 Gr.C

Search Result 21, Processing Time 0.027 seconds

A Study on Flow-Accelerated Corrosion of SA106 Gr.C Weldment (SA106 Gr.C강 용접재에서의 유체가속부식(FAC) 현상 연구)

  • Zheng Yugui
    • Journal of Welding and Joining
    • /
    • v.19 no.3
    • /
    • pp.334-341
    • /
    • 2001
  • The chemical and geometric effects of weld on flow-accelerated corrosion (FAC) of SA106 Gr.C low alloy steel pipe in 3.5wt% NaCl and simulated feedwater of nuclear power plant have been investigated by using rotating cylinder electrode. Polarization test and weight loss test were conducted and compared at rotating speed of 2000rpm (3.14m/s) with the variables of chemical and geometric parameters. The results showed that the chemical effects were relatively larger than the geometric effects, and the welded parts were the local anode and preferentially corroded, which could be explained by the differences between microstructural and compositional parameters. On the other hand, under active corrosion conditions, the heat affected zone were severely corroded and microstructural effects became the important role in the whole process.

  • PDF

High Strength SA508 Gr.4N Ni-Cr-Mo Low Alloy Steels for Larger Pressure Vessels of the Advanced Nuclear Power Plant (차세대 원전 대형 압력용기용 고강도 SA508 Gr.4N Ni-Cr-Mo계 저합금강 개발)

  • Kim, Min-Chul;Park, Sang-Gyu;Lee, Ki-Hyoung;Lee, Bong-Sang
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.10 no.1
    • /
    • pp.100-106
    • /
    • 2014
  • There is a growing need to introduce advanced pressure vessel steels with higher strength and toughness for the optimizatiooCn of the design and construction of longer life and larger capacity nuclear power plants. SA508 Gr.4N Ni-Cr-Mo low alloy steels have superior strength and fracture toughness, compared to SA508 Gr.3 Mn-Mo-Ni low alloy steel. Therefore, the application of SA508 Gr.4N low alloy steel could be considered to satisfy the strength and toughness required in advanced nuclear power plants. The purpose of this study is to characterize the microstructure and mechanical properties of SA508 Gr.4N low alloy steels. 1 ton ingot of SA508 Gr.4N model alloy was fabricated by vacuum induction melting followed by forging, quenching, and tempering. The predominant microstructure of the SA508 Gr.4N model alloy is tempered martensite having small packet and fine Cr-rich carbides. The yield strength at room temperature was 540MPa, and it was decreased with an increase of test temperature while DSA phenomenon occurred at around $288^{\circ}C$. Overall transition property of SA508 Gr.4N model alloy was much better than SA508 Gr.3 low alloy steel. The index temperature, $T_{41J}$, of SA508 Gr.4N model alloy was $-132^{\circ}C$ in Charpy impact tests, and reference nil-ductility transition temperature, $RT_{NDT}$ of $-105^{\circ}C$ was obtained from drop weight tests. From the fracture toughness tests performed in accordance with the ASTM standard E1921 Master curve method, the reference temperature, $T_0$ was $-147^{\circ}C$, which was improved more than $60^{\circ}C$ compared to SA508 Gr.3 low alloy steels.

Leak-Before-Break Assessment Margin Analysis of Improved SA508-Gr.1a Pipe Material (개선된 SA508-Gr.1a 배관재의 파단전누설평가 여유도 분석)

  • Kim, Maan-Won;Lee, Yo-Seob;Shin, In-Whan;Yang, Jun-Seog;Kim, Hong-Deok
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.16 no.1
    • /
    • pp.42-48
    • /
    • 2020
  • The effect of improving the tensile and J-R fracture toughness properties of SA508 Gr.1a on the LBB margin for the main steam pipe is investigated. The material properties and microstructure images of the existing main steam piping material SA106 Gr.C used in domestic nuclear power plants and the newly selected material SA508 Gr.1a were compared. For each material, LBB margins were calculated and compared through finite element analysis and crack instability evaluation. The LBB margin of the improved SA508 Gr.1a is found to be greatly improved compared to that of the existing SA106 Gr.C and SA508 Gr.1a. This is because of the increased material's strength and J-R fracture toughness compared to the previous materials. In order to analyze the effect of physical property change on the LBB margin, the sensitivity of each LBB margin according to the variation of tensile strength and J-R fracture toughness was analyzed. The effect of the change in tensile strength was found to be greater than that of the change in fracture toughness. Therefore, an increase in strength significantly influenced the improvement of the LBB margin of the improved SA508 Gr.1a.

Effect of Intercritical Annealing on the Dynamic Strain Aging(DSA) and Toughness of SA106 Gr.C Piping Steel

  • Lee, Joo-Suk;Kim, In-Sup;Park, Chi-Yong;Kim, Jin-Weon
    • Nuclear Engineering and Technology
    • /
    • v.32 no.1
    • /
    • pp.77-87
    • /
    • 2000
  • It is reported that the toughness and safety margins of the SA106 Gr.C main steam line piping steel is reduced due to dynamic strain aging (DSA) at the reactor operating temperature for Leak-Before-Break (LBB) application. In this study, intercritical annealing in two-phase ($\alpha$+${\gamma}$)region was performed to investigate the possibility of improving the toughness and reducing DSA susceptibility. The manifestations of DSA were still observed in the tensile tests of the annealed specimens. However, the ductility loss caused by DSA was smaller than that in the as-received material. Furthermore, the intercritical annealing was able to increase the Charpy impact toughness by 1.5 times compared to as-received. With the heat treatment, we could obtain microstructural changes such as the cleaner retained ferrite, increased ferrite content and somewhat finer grain size. It is considered that the reduced DSA was induced by cleaner retained ferrite, which in turn resulted in higher impact toughness in addition to the general toughening due to finer grain sizes and increased ferrite content.

  • PDF

Characteristics of Dynamic Strain Aging(DSA) in SA106Gr.C Piping Steel

  • Kim, Jin-Weon;Kim, In-Sup
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.05a
    • /
    • pp.771-776
    • /
    • 1995
  • Tensile and J-R tests were carried out to estimate the effects of dynamic strain aging(DSA) on SA106Gr.C piping steel. Tensile tests were performed under temperature range RT to $400^{\circ}C$ md strain rates from $1.39{\times}10^{-4}\;to\;6.95{\times}10^{-2}/s$. Fracture toughness was tested in the temperature range RT to $350^{\circ}C$ and load-line displacement rates 0.4 and 4mm/min. The effects of DSA on the tensile properties were clearly observed for phenomena such serrated flow, variation of ultimate and yield stress, and negative stram rate sensitivity. However, the magnitude of serration and strength increase by DSA was relatively small. this may be due to high ratio of Mn to C. In addition, crack initiation resistance, Ji and crack growth resistance, dJ/da were reduced in the range of $200-300^{\circ}C$, where DSA appeared as serrated flow and UTS hardening. The temperature corresponding to minimum fracture resistance was shifted to higher temperature with increasing loading rate.

  • PDF

SA106 Gr.C 모재와 용접재의 파괴인성에 미치는 온도와 하중속도의 영향

  • 김진원;박치용;김범년;김인섭
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05b
    • /
    • pp.324-329
    • /
    • 1998
  • 본 연구는 주증기배관으로 사용되고 있는 SA106. Gr.C의 모재와 용접계에 대해서 파괴인성에 미치는 온도와 하중속도의 영향을 살펴보기 위해서 다양한 온도와 하중속도에서 J-R 시험 및 인장시험을 수행하였다. 두 재료 모두 동적변형시효의 영향을 받고 있는 온도영역에서 약 40% 정도의 파괴인성 감소가 관찰되었으며, 하중속도에 따른 파괴인성 감소영역은 serration과 인장강도 증가 영역의 하중속도 의존성과 일치하였다. 원자력발전소 운전온도에서 모재와 용접재 모두 하중선변위속도가 4.0mm/min 일 때 파괴인성치의 최저를 보였으며, 하중속도가 증가함에 따라 증가하여 동적하중속도(800, 40mm/min)일 때 최대를 보였다. 모재와 용접재를 비교하면 용접재에서 serration이 뚜렸했고, 보다 넓은 온도영역에서 관찰되었다. 또한 인장강도의 증가가 보다 고온에서 형성되었다. 이러한 특성은 용접재가 모재에 비해 냉각률이 크고 미세한 결정입으로 이루어져있으며, 망간의 함량이 높기 때문으로 판단된다.

  • PDF

Fatigue Crack Propagation Behavior in Butt Weldment of SA106 Gr.C Main Steam Pipe Steel

  • Kim, Eung-Seon;Jang, Chan-Su;Kim, In-Sup
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05c
    • /
    • pp.92-97
    • /
    • 1996
  • The fatigue crack propagation behavior in SA106 Gr.C main steam pipe weld joint was investigated in air environment. Crack growth rate tests were conducted on base metal and weld metal at load ratio of 0.1 and 0.3 and at frequency of 10Hz. The fatigue crack growth rates of the base metal and the weld metal were above the ASME reference line and the fatigue crack propagation rate of the weld metal was higher than those of the base metal. Fatigue crack growth rate increased with increasing the load ratio and the effect of the load ratio was more significant in the weld metal. The post weld heat treatment increased the fatigue crack growth rates of the base metal by reducing compressive residual stress and decreased those of the weld metal by reducing weld defects.

  • PDF

Dynamic Strain Aging on the Leak-Before-Break Analysis in SA106 Gr.C Piping Steel

  • Kim, Jin-Weon;Kim, In-Sup
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05c
    • /
    • pp.193-198
    • /
    • 1996
  • The effect of dynamic strain aging (DSA) on the leak-before-break (LBB) analysis was estimated through the evaluation of leakage-size-crack and flaw stability in SA106 Gr.C piping steel. Also. the results were represented as a form of "LBB allowable load window". In the DSA temperature region. the leakage-size-crack length was smaller than that at other temperatures and it increased with increasing tensile strain rate. In the results of flaw stability analysis. the lowest instability load appeared at the temperature corresponding to minimum J- R curve which was caused by DSA. The instability load near the plant operating temperature depended on the loading rate of J-R data. and decreased with increasing tensile strain rate. These are due to the strain hardening characteristic and strain rate sensitivity of DSA. In the "LBB allowable load window". LBB allowable region was the narrowest at the temperature and loading conditions where DSA occurs.

  • PDF