• Title/Summary/Keyword: S100 calcium-binding protein A4

Search Result 11, Processing Time 0.484 seconds

Identification of Differentially Expressed Genes by TCDD in Human Bronchial Cells: Toxicogenomic Markers for Dioxin Exposure

  • Park, Chung-Mu;Jin, Kyong-Suk;Lee, Yong-Woo
    • Biomedical Science Letters
    • /
    • v.18 no.1
    • /
    • pp.1-9
    • /
    • 2012
  • Differentially expressed genes by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) were identified in order to evaluate them as dioxin-sensitive markers and crucial signaling molecules to understand dioxin-induced toxic mechanisms in human bronchial cells. Gene expression profiling was analyzed by cDNA microarray and ten genes were selected for further study. They were cytochrome P450, family 1, subfamily B, polypeptide 1 (CYP1B1), S100 calcium binding protein A8 (calgranulin A), S100 calcium binding protein A9 (calgranulin B), aldehyde dehydrogenase 1 family, member A3 (ALDH6) and peroxiredoxin 5 (PRDX5) in up-regulated group. Among them, CYP1B1 was used as a hallmark for dioxin and sharply increased by TCDD exposure. Down-regulated genes were IK cytokine, interferon-induced protein with tetratricopeptide repeats 1 (IFIT1), nuclease sensitive element binding protein 1 (NSEP1), protein tyrosine phosphatase type VI A, member 1 (PTP4A1), ras oncogene family 32 (RAB32). Although up-regulated 4 genes in microarray were coincided with northern hybridization, down-regulated 5 genes showed U-shaped expression pattern which is sharply decreased at lower doses and gradually increased at higher doses. These results introduce some of TCDD-responsive genes can be sensitive markers against TCDD exposure and used as signaling cues to understand toxicity initiated by TCDD inhalation in pulmonary tissues.

S100A4 Gene is Crucial for Methionine-Choline-Deficient Diet-Induced Non-Alcoholic Fatty Liver Disease in Mice

  • Zhang, Yin-Hua;Ma, De-Qiang;Ding, De-Ping;Li, Juan;Chen, Lin-Li;Ao, Kang-Jian;Tian, You-You
    • Yonsei Medical Journal
    • /
    • v.59 no.9
    • /
    • pp.1064-1071
    • /
    • 2018
  • Purpose: To explore the influence of S100 calcium binding protein A4 (S100A4) knockout (KO) on methionine-choline-deficient (MCD) diet-induced non-alcoholic fatty liver disease (NAFLD) in mice. Materials and Methods: S100A4 KO mice (n=20) and their wild-type (WT) counterparts (n=20) were randomly divided into KO/MCD, Ko/methionine-choline-sufficient (MCS), WT/MCD, and WT/MCS groups. After 8 weeks of feeding, blood lipid and liver function-related indexes were measured. HE, Oil Red O, and Masson stainings were used to observe the changes of liver histopathology. Additionally, expressions of S100A4 and proinflammatory and profibrogenic cytokines were detected by qRT-PCR and Western blot, while hepatocyte apoptosis was revealed by TUNEL staining. Results: Serum levels of aminotransferase, aspartate aminotransferase, triglyceride, and total cholesterol in mice were increased after 8-week MCD feeding, and hepatocytes performed varying balloon-like changes with increased inflammatory cell infiltration and collagen fibers; however, these effects were improved in mice of KO/MCD group. Meanwhile, total NAFLD activity scores and fibrosis were lower compared to WT+MCD group. Compared to WT/MCS group, S100A4 expression in liver tissue of WT/MCD group was enhanced. The expression of proinflammatory ($TGF-{\alpha}$, $IL-1{\beta}$, IL-6) and profibrogenic cytokines ($TGF-{\beta}1$, COL1A1, ${\alpha}-SMA$) in MCD-induced NAFLD mice were increased, as well as apoptotic index (AI). For MCD group, the expressions of proinflammatory and profibrogenic cytokines and AI in KO mice were lower than those of WT mice. Conclusion: S100A4 was detected to be upregulated in NAFLD, while S100A4 KO alleviated liver fibrosis and inflammation, in addition to inhibiting hepatocyte apoptosis.

S100A4 Expression is Closely Linked to Genesis and Progression of Glioma by Regulating Proliferation, Apoptosis, Migration and Invasion

  • Jin, Ting;Zhang, Zhuo;Yang, Xue-Feng;Luo, Jun-Sheng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.7
    • /
    • pp.2883-2887
    • /
    • 2015
  • Background: The calcium-binding S100A4 protein is involved in epithelial to mesenchymal transition, oncogenic transformation, angiogenesis, cytoskeletal integrity, mobility and metastasis of cancer cells. This study aimed to clarify the roles of S100A4 in genesis and progression of glioma. Materials and Methods: S100A4 expression was examined by real-time RT-CPR and Western blot in glioma and paired normal brain tissue (n=69), and compared with clinicopathological parameters of tumors. In addition, glioma U251 cells transfected with an S100A4-expressing plasmid were examined for proliferation by MTT, apoptosis by Annexin V-FITC, and migration and invasion with Transwell chambers. Results: Increased S100A4 mRNA expression was found in gliomas, compared with paired non-tumor tissue (p<0.001). Gradual elevation of overexpression of S100A4 was observed with increasing glioma grade (p<0.001). Astrocytoma showed lower S100A4 mRNA expression than oligodendrogliomas, with glioblastomas having highest values (p<0.001). Similar results were obtained for S100A4 protein, a positive link being found between mRNA and protein expression in gliomas (p<0.001). There was higher growth, lower apoptosis, stronger migration and invasion of S100A4 transfectants than control and mock transfected cells (p<0.001). Conclusions: These findings indicate that up-regulated S100A4 expression is positively linked to pathogenesis, progression and histogenesis of glioma by modulating proliferation, apoptosis, migration and invasion.

Characterization of the Monoclonal Antibody Specific to Human S100A2 Protein (인체 S100A2 단백질에 특이적인 단일클론 항체)

  • Kim, Jae Wha;Yoon, Sun Young;Kim, Joo Heon;Joo, Jong-Hyuck;Kim, Jin Sook;Lee, Younghee;Yeom, Young Il;Choe, Yong-Kyung;Choe, In Seong
    • IMMUNE NETWORK
    • /
    • v.3 no.1
    • /
    • pp.16-22
    • /
    • 2003
  • Background: The S100A2 gene, also known as S100L or CaN19, encodes a protein comprised of 99-amino acids, is a member of the calcium-binding proteins of EF-hand family. According to a recent study, this gene was over-expressed in several early and malignant carcinomas compared to normal tissues. To elucidate the role of S100A2 protein in the process during carcinogenesis, production of monoclonal antibody specific to the protein is essential. Methods: First, cDNA sequence coding for ORF region of human S100A2 gene was amplified and cloned into an expression vector to produce GST fusion protein. Recombinant S100A2 protein and subsequently, monoclonal antibody to the protein were produced. The specificity of anti-S100A2 monoclonal antibody was confirmed by immunoblot analysis of cross reactivity to other recombinant proteins of S100A family (GST-S100A1, GST-S100A4 and GST-S100A6). To confirm the relation of S100A2 to cervical carcinogenesis, S100A2 protein in early cervical carcinoma tissue was immunostained using the monoclonal antibody. Results: GST-S100A2 recombinant protein was purified by affinity chromatography and then fusion protein was cleaved and S100A2 protein was isolated. The monoclonal antibody (KK0723; Korean patent pending #2001-30294) to the protein was produced and the antibody did not react with other members of EF-hand family proteins such as S100A1, S100A4 and S100A6. Conclusion: These data suggest that anti-S100A2 monoclonal antibody produced in this study can be very useful for the early detection of cervical carcinoma and elucidation of mechanism during the early cervical carcinogenesis.

Expression of Periostin and S100A2 - S100A4 - Calcium Binding Proteins mRNA in Human Gingival Fibroblasts and Periodontal Ligament Fibroblasts (사람 치은섬유세포와 치주인대섬유모세포에서 Periostin과 S100A2-, S100A4-칼슘결합단백 mRNA의 발현)

  • Kim, Byung-Ock;Han, Kyung-Yoon;Choi, Young-Sun;Kim, Se-Hoon;Park, Byung-Gi;Kim, Heung-Joong;Park, Joo-Cheol
    • Journal of Periodontal and Implant Science
    • /
    • v.31 no.1
    • /
    • pp.109-122
    • /
    • 2001
  • Gingival fibroblasts(GF) and periodontal ligament fibroblasts(PDLF) are the major cellular components of periodontal soft connective tissues, but the precise molecular biological differences between these cells are not yet known. In the present study, we investigated the expression of S100A4, S100A2 calcium-binding protein and osteoblast-specific factor 2(OSF-2, Periostin) mRNA in GF and PDLF in vitro through the process of reverse transcription-polymerase chain reaction(RT-PCR) and Northern blot analysis in each. Human GF and PDLF were isolated from the gingival connective tissue and the middle third of freshly extracted healthy third molars. They were cultured in Dulbecco's Modified Eagle Medium(DMEM) containing 10% fetal bovine serum and cells in the third passage were used in the experiments. After extracting total RNA from cultured cells, RT-PCR and Northern analysis were performed using S100A4-, S100A2- and Periostin-specific oligonucleotide primers and subcloned cDNA probes in each. In PT-PCR and Northern analysis, the expression of S100A4 and Periostin mRNA in GF was slightly detectable. Interestingly, the expression of S100A4 and periostin mRNA in PDLF was much higher than that in GF. On the other hand, S100A2 mPNA was highly expressed in both GF and PDLF. Since there was a marked difference of S100A4 and Periostin expression between GF and PDLF in vitro, these data suggest that S100A4 and periostin could be used as a useful marker for distinguishing cultured gingival fibroblasts and periodontal ligament cells.

  • PDF

Receptor for Advanced Glycation Endproducts (RAGE), Its Ligands, and Soluble RAGE: Potential Biomarkers for Diagnosis and Therapeutic Targets for Human Renal Diseases

  • Lee, Eun Ji;Park, Jong Hoon
    • Genomics & Informatics
    • /
    • v.11 no.4
    • /
    • pp.224-229
    • /
    • 2013
  • Receptor for advanced glycation endproducts (RAGE) is a multi-ligand receptor that is able to bind several different ligands, including advanced glycation endproducts, high-mobility group protein (B)1 (HMGB1), S-100 calcium-binding protein, amyloid-${\beta}$-protein, Mac-1, and phosphatidylserine. Its interaction is engaged in critical cellular processes, such as inflammation, proliferation, apoptosis, autophagy, and migration, and dysregulation of RAGE and its ligands leads to the development of numerous human diseases. In this review, we summarize the signaling pathways regulated by RAGE and its ligands identified up to date and demonstrate the effects of hyper-activation of RAGE signals on human diseases, focused mainly on renal disorders. Finally, we propose that RAGE and its ligands are the potential targets for the diagnosis, monitoring, and treatment of numerous renal diseases.

Characterization of the Monoclonal Antibody Specific to Human S100A6 Protein (인체 S100A6 단백질에 특이한 단일클론 항체)

  • Kim, Jae Wha;Yoon, Sun Young;Joo, Joung-Hyuck;Kang, Ho Bum;Lee, Younghee;Choe, Yong-Kyung;Choe, In Seong
    • IMMUNE NETWORK
    • /
    • v.2 no.3
    • /
    • pp.175-181
    • /
    • 2002
  • Background: S100A6 is a calcium-binding protein overexpressed in several tumor cell lines including melanoma with high metastatic activity and involved in various cellular processes such as cell division and differentiation. To detect S100A6 protein in patient' samples (ex, blood or tissue), it is essential to produce a monoclonal antibody specific to the protein. Methods: First, cDNA coding for ORF region of human S100A6 gene was amplified and cloned into the expression vector for GST fusion protein. We have produced recombinant S100A6 protein and subsequently, monoclonal antibodies to the protein. The specificity of anti-S100A6 monoclonal antibody was confirmed using recombinant S100A recombinant proteins of other S100A family (GST-S100A1, GST-S100A2 and GST-S100A4) and the cell lysates of several human cell lines. Also, to identify the specific recognition site of the monoclonal antibody, we have performed the immunoblot analysis with serially deleted S100A6 recombinant proteins. Results: GST-S100A6 recombinant protein was induced and purified. And then S100A6 protein excluding GST protein was obtained and monoclonal antibody to the protein was produced. Monoclonal antibody (K02C12-1; patent number, 330311) has no cross-reaction to several other S100 family proteins. It appears that anti-S100A6 monoclonal antibody reacts with the region containing the amino acid sequence from 46 to 61 of S100A6 protein. Conclusion: These data suggest that anti-S100A6 monoclonal antibody produced can be very useful in development of diagnostic system for S100A6 protein.

Extracellular S100A4 negatively regulates osteoblast function by activating the NF-κB pathway

  • Kim, Haemin;Lee, Yong Deok;Kim, Min Kyung;Kwon, Jun-Oh;Song, Min-Kyoung;Lee, Zang Hee;Kim, Hong-Hee
    • BMB Reports
    • /
    • v.50 no.2
    • /
    • pp.97-102
    • /
    • 2017
  • Patients with inflammatory bone disease or cancer exhibit an increased risk of fractures and delayed bone healing. The S100A4 protein is a member of the calcium-binding S100 protein family, which is abundantly expressed in inflammatory diseases and cancers. We investigated the effects of extracellular S100A4 on osteoblasts, which are cells responsible for bone formation. Treating primary calvarial osteoblasts with recombinant S100A4 resulted in matrix mineralization reductions. The expression of osteoblast marker genes including osteocalcin and osterix was also suppressed. Interestingly, S100A4 stimulated the nuclear factor-kappaB (NF-${\kappa}B$) signaling pathway in osteoblasts. More importantly, the ex vivo organ culture of mouse calvariae with recombinant S100A4 decreased the expression levels of osteocalcin, supporting the results of our in vitro experiments. This suggests that extracellular S100A4 is important for the regulation of bone formation by activating the NF-${\kappa}B$ signaling pathway in osteoblasts.

Gene Expression Profiling of Acetaminophen Induced Hepatotoxicity in Mice

  • Suh, Soo-Kyung;Jung, Ki-Kyung;Jeong, Youn-Kyoung;Kim, Hyun-Ju;Lee, Woo-Sun;Koo, Ye-Mo;Kim, Tae-Gyun;Kang, Jin-Seok;Kim, Joo-Hwan;Lee, Eun-Mi;Park, Sue-Nie;Kim, Seung-Hee;Jung, Hai-Kwan
    • Molecular & Cellular Toxicology
    • /
    • v.2 no.4
    • /
    • pp.236-243
    • /
    • 2006
  • Microarray analysis of gene expression has become a powerful approach for exploring the biological effects of drugs, particularly at the stage of toxicology and safety assessment. Acetaminophen (APAP) has been known to induce necrosis in liver, but the molecular mechanism involved has not been fully understood. In this study, we investigated gene expression changes of APAP using microarray technology. APAP was orally administered with a single dose of 50 mg/kg or 500 mg/kg into ICR mice and the animals were sacrificed at 6, 24 and 72 h of APAP administration. Serum biochemical markers for liver toxicity were measured to estimate the maximal toxic time and hepatic gene expression was assessed using high-density oligonucleotide microarrays capable of determining the expression profile of >30,000 well-substantiated mouse genes. Significant alterations in gene expression were noted in the liver of APAP-administered mice. The most notable changes in APAP-administered mice were the expression of genes involved in apoptosis, cell cycle, and calcium signaling pathway, cystein metabolism, glutatione metabolism, and MAPK pathway. The majority of the genes upregulated included insulin-like growth factor binding protein 1, heme oxygenase 1, metallothionein 1, S100 calcium binding protein, caspase 4, and P21. The upregulation of apoptosis and cell cycle-related genes were paralleled to response to APAP. Most of the affected gene expressions were returned to control levels after 72 hr. In conclusion, we identified potential hepatotoxicity makers, and these expressions profiling lead to a better understanding of the molecular basis of APAP-induced hapatotoxicity.

Identification of Matrix Mineralization-Related Genes in Human Periodontal Ligament Cells Using cDNA Microarray (cDNA microarray에 의한 치주인대세포의 광물화 결절형성에 관여하는 유전자들의 분석)

  • Shin, Jae-Hee;Park, Jin-Woo;Yeo, Shin-Il;Noh, Woo-Chang;Kim, Moon-Kyu;Kim, Jung-Chul;Suh, Jo-Young
    • Journal of Periodontal and Implant Science
    • /
    • v.37 no.sup2
    • /
    • pp.447-463
    • /
    • 2007
  • Periodontal ligament (PDL) cells have been known as multipotential cells, and as playing an important rolesin periodontal regeneration. The PDL cells are composed of heterogeneous cell populations which have the capacity to differentiate into either cementoblasts or osteoblasts, depending on needs and conditions. Therefore, PDL cells have the capacity to produce mineralized nodules in vitro in mineralization medium which include ascorbic acid, ${\beta}$-glycerophosphate and dexamethasone. In spite of these well-known osteoblast like properties of PDL cells, very little is known about the molecules involved in the formation of the mineralized nodules in the PDL cells. In the present study, we analysed gene-expression profiles during the mineralization process of cultured PDL cells by means of a cDNA microarray consisting of 3063 genes. Nodules of mineralized matrix were strongly stained with alizarin red S on the PDL cells cultured in the media with mineralization supplements. Among 3,063 genes analyzed, 35 were up-regulated more than two-fold at one or more time points in cells that developed matrix mineralization nodules, and 38 were down-regulated to less than half their normal level of expression. In accord with the morphological change we observed, several genes related to calcium-related or mineral metabolism were induced in PDL cells during osteogenesis, such as IGF-II and IGFBP-2. Proteogycan 1, fibulin-5, keratin 5, ,${\beta}$-actin, ${\alpha}$-smooth muscle actin and capping protein, and cytoskeleton and extracellular matrix proteins were up-regulated during mineralization. Several genes encoding proteins related to apoptosis weredifferentially expressed in PDL cells cultured in the medium containing mineralization supplements. Dkk-I and Nip3, which are apoptosis-inducing agents, were up-regulated, and Btf and TAXlBP1, which have an anti-apoptosis activity, were down-regulated during mineralization. Also periostin and S100 calciumbinding protein A4 were down-regulated during mineralization.