• Title/Summary/Keyword: S. marcescens

Search Result 113, Processing Time 0.023 seconds

The Regulation of Uric Acid on the Biosynthesis of Serratia marcescens and Lactobacillus plantarum Purine Nucleoside Phosphorylase (Serratia marsecscens 와 Lactobacillus plantarum Purine Nucleoside Phosphorylase의 생합성에 대한 요산의 조절)

  • Choi, Byung-Bum
    • Korean Journal of Food Science and Technology
    • /
    • v.33 no.3
    • /
    • pp.361-365
    • /
    • 2001
  • The effects of purine catabolites in growth media on the biosynthesis of Serratia marcescens and Lactobacillus plantarum purine nucleoside phosphorylase (PNP) activity were examined. Serratia PNP activity was decreased approximately by 30% in the presence of high concentrations of inosine $(5{\sim}15\;mM)$, but was not affected at low concentrations of inosine $(0.1{\sim}1\;mM)$. However, Lactobacillus PNP activity was increased above 60% by inosine among the range from 5 to 15 mM. Serratia PNP activity was decreased approximately by 45% in the presence of high concentrations of hypoxanthine $(5{\sim}15\;mM)$, but was not affected at low concentrations of hypoxanthine $(0.1{\sim}0.5\;mM)$. Lactobacillus PNP activity was increased approximately by 20% in the presence of low concentrations of hypoxanthine $(0.1{\sim}0.5\;mM)$, and increased approximately by $50{\sim}65%$ in the presence of concentrations of hypoxanthine $(1{\sim}15\;mM)$. Serratia and Lactobacillus PNP activity was increased 20% by low concentrations of uric acid (0.5 mM), but was decreased $40{\sim}80%$ at high concentrations of same purine catabolite $(10{\sim}15\;mM)$. These data suggest that purine nucleoside phosphorylase in Serratia marcescens ATCC 25419 and Lactobacillus plantarum ATCC 8014 is positively regulated by a low uric acid concentration, and then may play a regulatory role in a purine nucleotide catabolic pathway.

  • PDF

Biodegradation of Diazinon by Serratia marcescens DI101 and its Use in Bioremediation of Contaminated Environment

  • Abo-Amer, Aly E.
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.1
    • /
    • pp.71-80
    • /
    • 2011
  • Four diazinon-degrading bacteria were isolated from agricultural soil by using an enrichment technique. The biochemical analysis and molecular method including RFLP indicated that these isolates were identical, and one strain designated DI101 was selected for further study. Phylogenetic analysis based on 16S rDNA sequencing indicated that the strain DI101 clearly belongs to the Serratia marcescens group. The ability of the strain to utilize diazinon as a source of carbon and phosphorus was investigated under different culture conditions. The DI101 strain was able to completely degrade 50 mg/l diazinon in MSM within 11 days with a degradation rate of 0.226 $day^{-1}$. The inoculation of sterilized soil treated with 100 mg/kg of diazinon with $10^6$ CFU/g DI101 resulted in a faster degradation rate than was recorded in non-sterilized soil. The diazinon degradation rate by DI101 was efficient at temperatures from 25 to $30^{\circ}C$ and at pHs from 7.0 to 8.0. The degradation rate of diazinon was not affected by the absence of a phosphorus supplement, and addition of other carbon sources (glucose or succinate) resulted in the slowing down of the degradation rate. The maximum degradation rate ($V_{max}$) of diazinon was 0.292 $day^{-1}$ and its saturation constant ($K_s$) was 11 mg/l, as determined by a Michaelis-Menten curve. The strain was able to degrade diethylthiophosphate-containing organophosphates such as chlorpyrifos, coumaphos, parathion, and isazofos when provided as a source of carbon and phosphorus, but not ethoprophos, cadusafos, and fenamiphos. These results propose useful information for the potential application of the DI101 strain in bioremediation of pesticide-contaminated environments.

Optimal Production of N-acetyl-$\beta$-D-glucosamine Using Chitinolytic Enzyme (Chitinolytic Enzyme을 이용한 N-acetyl-$\beta$-D-glucosamine의 최적생산)

  • 이천우;이은영장상목김광
    • KSBB Journal
    • /
    • v.11 no.6
    • /
    • pp.696-703
    • /
    • 1996
  • The bacterium Serratia marcescens QM Bl466 produces selectively large amount of chitinolytic enzymes(about 1mg/L medium). Enzymatic hydrolysis of chitin to N-acelyl-${\beta}$-D-glucosamine(NAG) is performed by a system consisting of two hydrolases : chitinase and chilobiase. Objectives of this study included optimization of a microbial host by using chitin particles for chitinase/chitobiase production and secretion and also development of batch fermentation system for high cell density cultivalion of S. marcescens QM B1466. Also, the influence of chitin source and carboxymethyl(CM) chitin on chitinase/chitobiase production and NAG production was investigated. When carboxymethyl chitin was substituted for colloidal and practical grade chitin, the chitinase activity was increased about 7∼10U/mL. In this case, the ratio of chitinase/chitobiase was 30.03U/3.44U(9:1). The highest amounts of NAG(3.0g/L) was obtained.

  • PDF

Effect of Pyrimidylsalicylate on the Valine Sensitive Acetolactate Synthase Purified from Serroatia marcescens

  • Yang, Jeong-Hee;Kim, Soung-Soo
    • BMB Reports
    • /
    • v.30 no.1
    • /
    • pp.13-17
    • /
    • 1997
  • The inhibitory effect of herbicides such as sulfonylurea derivatives, imidazolinones and pyrimidylsalicylate has been examined on the purified valine sensitive acetolactate synthase (ALS) from Serratia marcescens. The concentration of sulfometuron methyl which inhibits 50% of the ALS activity was 2.5 mM. The required concentrations of triasulfuron, primisulfuron methyl and imazaquin for the 50% inhibition of the ALS activity were 1 mM. The resistance of Serratia ALS to sulfometuron methyl, imazapyr and imazaquin is similar to that of E. coli ALS 1. However, pyrimidylsalicylate showed a potent inhibitory effect on the Serratia ALS almost 13 times more potent than on E. coli ALS II, which is known as herbicide-sensitive isozyme. The inhibitory mode was competitive against pyruvate. 150 value was determined to be $17{\mu}M$ in an assay mixture containing 20 mM pyruvate, and the $K_1$, value was calculated to be $0.4{\mu}m$ from the modified double reciprocal plot of 1/V versus $1/S^2$.

  • PDF

Antibiotic Resistance Survey of Gram Negative Bacilli in Daejeon Area (대전지역에서 그람음성간균의 항생제 내성률 조사)

  • Yook, Keun-Dol
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.39 no.3
    • /
    • pp.178-182
    • /
    • 2007
  • During 2006, the antibiotic resistance rate were investigated in gram negative bacteria. Resistance to piperacillin were detected at 60% in Escherichia coli, and 37% in Klebsiella pneumoniae. Ceftriaxone were detected 58% in Enterobacter cloacae, 52% in Acinetobacter baumannii, 43% in Enterobacter aerogenes and 76% were detected in Serratia marcescens. Between 1998 and 2007 antibiotic resistance rate were decreased in seven types antibiotic drugs. but, ceftazidime were increased from 12 to 20% during this times. In addition, E. coli, E. cloacae, A. baumannii and E. aerogenes were more isolated from May to June and K. pneumoniae and S. marcescens were more isolated from July to September. We should monitor and control antibiotic use and regularly survey antibiotic resistance patterns among pathogens in the hospital.

  • PDF

Incubation conditions affecting biogenic amines degradation of probiotic lactic acid bacteria (프로바이오틱 유산균의 바이오제닉 아민 분해능에 영향을 미치는 배양 조건)

  • Lim, Eun-Seo
    • Korean Journal of Microbiology
    • /
    • v.53 no.4
    • /
    • pp.273-285
    • /
    • 2017
  • The purpose of this study was to investigate the inhibitory effect of antibacterial substances produced by probiotic lactic acid bacteria (LAB) against biogenic amines-producing bacteria and the influence of culture conditions on the antibacterial activity of bacteriocin and organic acid. The bacteriocin solutions of Lactobacillus plantarum FIL20 (64 AU/ml) and Lactobacillus paracasei FIL31 (128 AU/ml) showed strong antibacterial activity against Serratia marcescens CIH09 and Aeromonas hydrophilia RIH28, respectively. And the lactic acid contents in the cell-free culture supernatants (CFCS) obtained from FIL20 and FIL31 strains were $107.3{\pm}2.7mM$ and $129.5{\pm}4.6mM$, respectively. Therefore, the bacteriocin solution (200 AU/ml) and the CFCS ($200{\mu}l/ml$) produced by L. plantarum FIL20 and L. paracasei FIL31 significantly (P < 0.05) decreased the bacterial numbers and histamine and tyramine production ability of S. marcescens CIH09 and A. hydrophilia RIH28. The amounts of histamine and tyramine produced by the CIH09 strain under conditions of low initial pH (5.0) and incubation temperature ($15^{\circ}C$) was significantly reduced by treatment with bacteriocin solution and CFCS obtained from L. plantarum FIL20. In addition, the bacterial counts and biogenic amines contents of CIH09 strain were significantly decreased (P < 0.05) when sodium chloride (5%) or potassium nitrite (200 mg/g) were mixed with the antibacterial substances of L. plantarum FIL20. Consequently, the bacteriocin and organic acid solution of L. plantarum FIL20 and L. paracasei FIL31 can be used as a biological preservation to effectively control the production of biogenic amines by the application of hurdle technology.

Isolation and Characterization of Streptomyces spp. from Soil Showing Broad Spectrum Antibiotic Activity (광범위한 항균활성을 보이는 토양 유래 Streptomyces 속 방선균의 분리 및 특성 연구)

  • Park, Sewook;Bae, Taeok;Kim, Seung Bum
    • Korean Journal of Microbiology
    • /
    • v.48 no.4
    • /
    • pp.270-274
    • /
    • 2012
  • Three actinobacterial strains exhibiting broad spectrum antibiotic activities were isolated from soil, and characterized. Through the comparative analysis of 16S rRNA genes, the three isolates could be assigned to the genus Streptomyces, as S. tanashiensis, S. nashivillensis, and S. rubiginosohelvolus were found to be the mostly related species, but the strains formed independent phylogenetic lineage. Each strain exhibited different antimicrobial profile against Gram-positive bacteria Bacillus subtilis and Staphylococcus aureus, Gram-negative bacteria Salmonella typhi, Enterobacter cloacae, Serratia marcescens, and Pseudomonas aeruginosa, and also fungi Candida tropicalis and Candida krusei. In addition to the antimicrobial profile, the strains also differed in API ZYM test results, which implies that the three strains might produce difference antimicrobial substances.

Analysis and cloning of cAMP receptor protein(CRp) gene in Serratia marcescens (Serratia marcescens에서 cAMP receptor protein(CRP) 유전자의 클로닝 해석)

  • Yoo, Ju-soon;Kim, Hae-Sun;Moon, Jong-Hwan;Chung, Soo-Yeol;Choi, Yong-Lark
    • Journal of Life Science
    • /
    • v.8 no.3
    • /
    • pp.263-271
    • /
    • 1998
  • One of the better-characterized transcription factor of E. coli is the cAMP receptor protein(CRP) and the CRP binds cAMP and DNA. The cAMP-CRP complex is involved in regulation of many genes at bacteria. The cAMP-CRP regulatory element represents, in some respects, a global regulatory network. The aim of this work was to study the structure and the mechanisms controlling the expression of CRP in Serratia marcescens. We have been get 5 different clones from Serratia which stimulated the cells to use maltose as a sole carbon source in E. coli TP2139. The crp gene clone, pCKB12, was confirmed by Southern hybridization with E. coli crp gene. The location of the crp gene was determined by construction subclones carrying various portions of pCKB12. To investigate the potential role of CRP in E. coli, lacZ fused plasmids were constructed and investigated the ${\beta}$-galactosidase activity of the fused plasmid. The Serratiamarcescens cAMP receptor protein can substitute the E. coli CRP in transcriptional activation at the lacZ gene. These results suggest that Serratia marcescens cAMP receptor protein complex functions to regulate several promoters in E. coli.

  • PDF

Interaction of DA-1131,A New Carbapenem Antibiotic, with bacterial $\beta$-lactamases

  • Park, Seong-Hak;Kim, Gye-Won;Kim, Ji-Young;Lim, Geun-Jho;Chung, Dong-Yun;Kim, Won-Bae;Junnick Yang
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1996.04a
    • /
    • pp.237-237
    • /
    • 1996
  • DA-1131, imipenem(IPM) 및 meropenem(MEPM)은 각종 $\beta$-lactamase를 산생하는 세균에 대하여 우수한 항균력을 나타내었으나 cefpirome(CPR), ceftazidime(CAZ) 및 azthreonam(AZT)의 경우에는 extended broad spectrum cephalosporinase 산생 균주를 포함하여 일부 균주의 내성획득이 확인되었다. DA-ll3l의 $\beta$-lactamase Inducible activity는 DA-1131, IPM 및 MEPM이 거의 동일하였으며, imipenemase 산생균주로 동점된 Serratia marcescens 11001이 산생하는 $\beta$-lactamase이외의 효소에는 대부분 가수분해되지 않는 결과를 나타내었다. S. marcescens 11001이 산생하는 $\beta$-lactamase에 대한 효소역학상수는 DA-1131, IPM 및 MEPM에서 모두 유사하였고, $\beta$-lactamase에 대한 affinity도 큰 차이를 나타내지 않았다.

  • PDF