Effect of Pyrimidylsalicylate on the Valine Sensitive Acetolactate Synthase Purified from Serroatia marcescens

  • Yang, Jeong-Hee (Department of Biochemistry, Bioproducts Research Center and College of Science, Yonsei University) ;
  • Kim, Soung-Soo (Department of Biochemistry, Bioproducts Research Center and College of Science, Yonsei University)
  • Received : 1996.10.01
  • Published : 1997.01.31

Abstract

The inhibitory effect of herbicides such as sulfonylurea derivatives, imidazolinones and pyrimidylsalicylate has been examined on the purified valine sensitive acetolactate synthase (ALS) from Serratia marcescens. The concentration of sulfometuron methyl which inhibits 50% of the ALS activity was 2.5 mM. The required concentrations of triasulfuron, primisulfuron methyl and imazaquin for the 50% inhibition of the ALS activity were 1 mM. The resistance of Serratia ALS to sulfometuron methyl, imazapyr and imazaquin is similar to that of E. coli ALS 1. However, pyrimidylsalicylate showed a potent inhibitory effect on the Serratia ALS almost 13 times more potent than on E. coli ALS II, which is known as herbicide-sensitive isozyme. The inhibitory mode was competitive against pyruvate. 150 value was determined to be $17{\mu}M$ in an assay mixture containing 20 mM pyruvate, and the $K_1$, value was calculated to be $0.4{\mu}m$ from the modified double reciprocal plot of 1/V versus $1/S^2$.

Keywords

References

  1. Pestic. Sci. v.31 Babczinski, P.;Zelinski, T. https://doi.org/10.1002/ps.2780310306
  2. Pestic. Sci. v.29 Brown, H.M. https://doi.org/10.1002/ps.2780290304
  3. Science v.224 Chaleff, R.S.;Mauvais, C.J.
  4. Science v.223 Chaleff, R.S.;Ray, T.B. https://doi.org/10.1126/science.223.4641.1148
  5. J. Biochem. Mol. Biol.(formerly Korean Biochem. J.) v.28 Choi, H.I.;Kim, S.S.
  6. Annu. Microbiol. (Paris) v.133A De Felice, M.;Lago, C.T.;Scquires, C.H.;Calvo, J.M.
  7. Pestic. Sci. v.31 Devine, M.D.;Marles, M.A.S.;Hall, L.M. https://doi.org/10.1002/ps.2780310303
  8. Biochem. J. v.55 Dixon, M. https://doi.org/10.1042/bj0550170
  9. Plant Physiol. v.95 Durner, J.;Galius, V.;Boger, P. https://doi.org/10.1104/pp.95.4.1144
  10. J. Bacteriol. v.157 Eoyang, L.;Silverman, P.M.
  11. Genetics v.109 Falco, S.C.;Dumas, K.S.
  12. Nucleic Acids Res. v.13 Friden, P.;Donegan, J.;Muller, J.;Tsui, P.;Freundlich, M.;Eoyang, L.;Weber, R.;Silverman, P.M.
  13. J. Bacteriol. v.137 Grimminger, H.;Umbarger, H.E.
  14. Pestic. Sci. v.29 Kleschick, W.A.;Ostales, M.J.;Dunbar, J.E.;Meikle, R.W.;Monte, W.T.;Pearson, N.R.;Sinder, S.W.;Vinogradoff, A.P. https://doi.org/10.1002/ps.2780290309
  15. J. Biol. Chem. v.250 La Rossa, R.A.;Schloss, J.V.
  16. J. Bacteriol. v.160 La Rossa, R.A.;Sumulski, D.R.
  17. J. Biol. Chem. v.293 Lowry, O.H.;Rosebrough, N.J.;Farr, A.L.;Randall, R.J.
  18. Plant Physiol. v.85 Mazur, B.J.;Chui, C.F.;Smith, J.K. https://doi.org/10.1104/pp.85.4.1110
  19. Plant Physiol. v.75 Ray, T.B. https://doi.org/10.1104/pp.75.3.827
  20. Nature v.331 Schloss, J.V.;Ciskanik, L.M.;Van Dyk, D.E. https://doi.org/10.1038/331360a0
  21. Biochemistry v.24 Schloss, J.V.;Van Dyk, D.E.;Vasta, J.F.;Kutny, R.M. https://doi.org/10.1021/bi00339a034
  22. Plant Physiol. v.76 Shaner, D.L.;Anderson, R.C.;Stidham, M.A. https://doi.org/10.1104/pp.76.2.545
  23. J. Chromatogr. v.444 Singh, B.K.;Stidham, M.A.;Shaner, D.L. https://doi.org/10.1016/S0021-9673(01)94028-2
  24. Nucleic Acids Res. v.11 Squires, C.H.;De Felice, M.;Derereux, J.;Calvo, J.M. https://doi.org/10.1093/nar/11.15.5299
  25. Pesticide Sci. v.29 Stidham, M.A.;Shaner, D. https://doi.org/10.1002/ps.2780290308
  26. Nucleic Acids Res. v.13 Wek, R.C.;Hauser, C.A.;Hatfield, G.W. https://doi.org/10.1093/nar/13.11.3995
  27. Proc. Natl. Acad. Sci. USA v.83 Yadav, N.;McDevitt, R.E.;Bernard, S.;Falco, S.C. https://doi.org/10.1073/pnas.83.12.4418
  28. Korean Biochem. J.(presently J. Biochem. Mol. Biol.) v.25 Yang, J.H.;Kim, S.S.
  29. Biochim. Biophys. Acta v.1157 Yang, J.H.;Kim, S.S. https://doi.org/10.1016/0304-4165(93)90062-D