• Title/Summary/Keyword: S-methylmethionine

Search Result 7, Processing Time 0.022 seconds

Development of S-Methylmethionine Sulfonium Derivatives and Their Skin-Protective Effect against Ultraviolet Exposure

  • Kim, Won-Serk;Kim, Wang-Kyun;Choi, Nahyun;Suh, Wonhee;Lee, Jinu;Kim, Dae-Duk;Kim, Ikyon;Sung, Jong-Hyuk
    • Biomolecules & Therapeutics
    • /
    • v.26 no.3
    • /
    • pp.306-312
    • /
    • 2018
  • In a previous study, we have demonstrated that S-methylmethionine sulfonium (SMMS) confers wound-healing and photoprotective effects on the skin, suggesting that SMMS can be used as a cosmetic raw material. However, it has an unpleasant odor. Therefore, in the present study, we synthesized odor-free SMMS derivatives by eliminating dimethyl sulfide, which is the cause of the unpleasant odor and identified two derivatives that exhibited skin-protective effects: one derivative comprised (2S,4S)- and (2R,4S)-2-phenylthiazolidine-4-carboxylic acid and the other comprised (2S,4R)-, (2S,4S)-, (2R,4R)-, and (2R,4S)-2-phenyl-1,3-thiazinane-4-carboxylic acid. We performed in vitro proliferation assays using human dermal fibroblasts (hDFs) and an immortalized human keratinocyte cell line (HaCaT). The two SMMS derivatives were shown to increase hDF and HaCaT cell proliferation as well as improve their survival by protecting against ultraviolet exposure. Moreover, the derivatives regulated the expression of collagen type I and MMP mRNAs against ultraviolet exposure in hDFs, suggesting that these derivatives can be developed as cosmetic raw materials.

Change in Levels of Vitamin U and Amino Acids in Korean Chinese Cabbages Under Various Drying Methods

  • Kim, Gun-Hee
    • Journal of Food Hygiene and Safety
    • /
    • v.18 no.4
    • /
    • pp.243-250
    • /
    • 2003
  • S-methylmethionine, vitamin U levels were affected by cultivars, parts fo Korean Chinese cabbages, and drying methods. Among drying conditions, freeze drying method appeared the best condition to maintain bitamin U content compared to oven and air drying methods. In the case of KOrean Chinese cabbages, outward leaves have high levels of chlorphyll and fiber. From this study, the outward parts contained high levels of vitamin U in two cultivars. Leaf parts were 1.1-21.2 times higher in vitamin U levels than midribs in both cultivars. This difference was shown most distinctively in freeze dried outward parts of Winter Pride cultivar. Like vitmnin U, fee amino acids also showed much higher levels in leaves. Levels of amino acids showed irregulatoy changing patterns at different parts and cultivar of Korean Chinese cabbages with various drying methods, Alanine and threonie appeared relatively aboundant amino acids in most parts of samples. Since no distinctive trends were observed in this rsult, it seems no relationship exists between amon oacids and bitamin U levels. Levels of methionine in differnent parts and cultivars of Korean Chinese cabbages dried with various methods did no show clear relationship with tlevel of vitamin U. Moreover, emthionine was not detected in freeze dired outward leaf parts which were the hithest parts of vitamin U levels in Winter Pride and 55 days cultivar. There were simila levels of methionine between overn and freeze drying. Samples prepared by air drying showed significatly lower levels than those by oven and freeze dryting. Methionine as aprecursor of vitamin U, may play a role in an increase of vitamin U during drying of KOrean Chinese cabbages.

Regulation of methionine biosynthesis in plants; transgenic study

  • Kim, Jungsup;Thomas Leustek
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 2002.04a
    • /
    • pp.73-82
    • /
    • 2002
  • The committing step in Met and S-adenosyl-L-methionine (SAM) synthesis is catalyzed by cystathionine ${\gamma}$ -synthase (CGS). Transgenic Arabidopsis thaliana overexpressing CGS under control of 35S promoter show increased soluble Met and its metabolite S-methylmethionine, but only at specific stages of development. CGS-overexpressing seedlings are resistant to ethionine. Similar results were obtained with transgenic potato plants overexpressing Arabidopsis CGS. Several of the transgenic lines show silencing of CGS resulting in deformed p]ants with a reduced capacity for reproductive growth similar as transgenic plants by antisense RNA (CGS[-]). Exogenous feeding of Met to the CGS[-] and CGS[+] silenced plants partially restores their growth. Similar morphological deformities are observed in plants cosuppressed for SAM synthetase, even though such plants accumulate 250 fold more soluble Met than wild type and they overexpress CGS. The results suggest that the abnormalities associated with CGS and SAM synthetase silencing are due in part to a reduced ability to produce SAM, and that SAM may be a regulator of CGS expression.

  • PDF

HPLC Analysis of Methylated Amino Acids : Methylated Amino Acids on HPLC

  • Park, Kwang-Sook;Hong, Sung-Youl;Lee, Hyang-Woo;Kim, Snag-Duk;Paik, Woon-Ki
    • Archives of Pharmacal Research
    • /
    • v.9 no.1
    • /
    • pp.15-18
    • /
    • 1986
  • Various naturally occuring methylated amino acid derivatives were resolved on high performance liquid chromatography (HPLC), using o-phthadialdehyde as a fluorogenic reagent. We separated .$\varepsilon$-N-monomethyllysine, $\varepsilon$-N- dimethyllysine, and $\varepsilon$-N-acetyllysine from lysine derivatives. $N^{G}$-Monomethylarginine and $N^{G}$-dimethylarginine were separated from arginine derivatives. However, $\varepsilon$-N-monomethyllsine and $\varepsilon$-N-trimethyllysine, $N^{G}$, $N^{G}$-dimethylarginine and $N^{G}$, $N^{G}$-dimethylarginine were not resolved under the conditions employed. S-Methylmethionine, S-methylcysteine, and 1-N-methylhistidine or 3-N-methylhistidine were clearly separated from their reference amino acids, even though 1-N-methyl-and 3-N-methylhistidine coul not be separated.

  • PDF

Impact of Cooking Method on Bioactive Compound Content and Antioxidant Capacity of Cabbage (양배추 가공조건에 따른 생리활성 물질의 함량 및 항산화 활성)

  • Hwang, Eun-Sun;Thi, Nhuan Do
    • Korean Journal of Food Science and Technology
    • /
    • v.47 no.2
    • /
    • pp.184-190
    • /
    • 2015
  • We evaluated the effects of three common cabbage cooking methods (blanching, steaming and microwaving) on glucosinolate and S-methylmethionine (SMM) content and total antioxidant capacity of cabbage leaves. We detected four glucosinolates, including glucoraphanin, sinigrin, glucobrassicin, and 4-methoxyglucobrassicin, by high-pressure liquid chromatography (HPLC). Cabbage contained high levels of SMM (192.85 mg/100 g dry weight), compared to other cruciferous vegetables. Blanching cabbage leaves for one to ten minutes decreased glucosinolate and SMM levels, whereas microwaving or steaming cabbage for 5-10 min preserved glucosinolate and SMM levels. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and 2-2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical scavenging activities of cooked cabbage generally decreased as cooking time increased, but microwave cooking had a smaller negative effect on antioxidant activities than blanching or steaming. This study demonstrates that some domestic cooking methods, such as microwaving and steaming, can increase the bioaccessibility of glucosinolates and SMM, highlighting the positive role of cooking on the nutritional qualities of cabbage.

Changes in Vitamin U, Amino acid and Sugar Levels in Chinese Cabbages during Storage (배추 저장동안 비타민 U, 아미노산, 유리당 함량 변화)

  • Hong, Eun-Young;Kim, Gun-Hee
    • Food Science and Preservation
    • /
    • v.13 no.5
    • /
    • pp.589-595
    • /
    • 2006
  • Vitamin U (5-methylmethionine) levels of Chinese cabbages at $4^{\circ}C$ were investigated to establish its physiological characteristics and also amino acids and sugars levels to find out their relationship with vitamin U were determined The levels of vitamin U showed different from parts of Chinese cabbages. The highest value was shown in outward leaf in Wineter Pride (12.70 mg/100 g fresh wt.) and core leaf in 55 Days cultivars (18.60 mg/100 g fresh wt.). leaf pare were 1.7-9.0 times higher in vitamin U levels than those in midribs in both cultivars. levels of vitamin U in stored Chinese cabbages increased with storage time. Moreover, two cultivars used far this experiment showed different pattern during storage. In Winter Pride, vitamin U levels sharply increased in leaf and midrib of cote part during storage. This value reached about 2.5 times for leaf and 4 times for midrib compared to the levels of initial storage time in core part In 55 Days cultivars, outward leaf showed an increased level of vitamin U of 1.8 times compared to that of 1 month storage time. Methionine known as a precursor of vitamin U synthesis did not showed clear relationship with vitamin U levels. Methionine was either not detected or at negligibly low levels in Chinese cabbages during storage. Methionine may not play a role in an increase of vitamin U during storage of Chinese cabbages at $4^{\circ}C$. No clear relationship of free amino acids and soluble sugars for vitamin U accumulation during storage of Chinese cabbages was shown in this study.

Vitamin U in Medicinal Food Plants

  • Kim Gun-Hee
    • Proceedings of the Korean Society of Food Science and Nutrition Conference
    • /
    • 2004.11a
    • /
    • pp.224-231
    • /
    • 2004
  • Vitamin U levels in 26 kinds of food plants are well known to healthy vegetables in Asian or Western countries were determined. Spinach showed the highest level of 452.04 mg/kg and in order Pack-choi (343.18 mg/kg) > Kale (234.18 mg/kg) > Somssukbujaengi (197.66 mg/kg) > leaf mustard (196.21 mg/kg) > aralia bud (192.50 mg/kg)> broccoli (189.03 mg/kg) >Asparagus (187.35 mg/kg). Among Korean wild medicinal plants, Sumssukbujaengi showed the highest value followed by Sanmanul (a kind of wild garlic) level of 143.46 mg/kg. For Chinese cabbages and cabbages, vitamin U showed different levels according to the parts of plant such as core, middle, outward leaves. In both samples, middle parts of leaves including midribs contained the highest level of vitamin U. The level of vitamin U was dependent on the part of the plant sample and cultivars. Leaf parts of turnip and white radish showed higher value of 84.82 mg/kg and 124.62 mg/kg than those of roots which were in order of middle (112.39 mg/kg), top (84.84 mg/kg) and bottom (84.61 mg/kg) portions in the white radish. In the analysis of amino acids, we didn't find either distinctive relationship between methionine and vitamin U synthesis or significant connection various free amino acids and vitamin U level in food plants.

  • PDF