
INTRODUCTION

S-Methylmethionine sulfonium (SMMS) is a methionine 
derivative found most commonly in plant sources, such as 
cabbage, kohlrabi, turnip, tomatoes, and celery (Turner and 
Shapiro, 1961; Skodak et al., 1965; Samson, 1971; Hattula 
and Granroth, 1974). SMMS is widely referred to as vitamin 
U because of its potent therapeutic effect in preventing gas-
trointestinal ulceration (Cheney, 1949; Samson, 1971; Kopin-
ski et al., 2007). For example, rapid healing of peptic ulcers 
has been reported in patients consuming fresh cabbage juice 
(Cheney, 1949). Recently, protective effects of SMMS in val-
proic acid-induced liver and kidney injury have been reported 
(Sokmen et al., 2012; Gezginci-Oktayoglu et al., 2016). In ad-
dition, hypolipidemic effects and inhibitory effects of SMMS on 
differentiation of 3T3-L1 pre-adipocytes have been reported 
(Matsuo et al., 1980a, 1980b; Nakamura et al., 1981; Lee et 

al., 2012). 
Previously, we have demonstrated that SMMS confers 

wound-healing and photoprotective effects on skin and can 
thus be used as a cosmetic raw material (Kim et al., 2010, 
2015). Animal experiments have shown that topical adminis-
tration of SMMS to both physical and chemical wounds fa-
cilitates wound closure and promotes re-epithelialization (Kim 
et al., 2010, 2015). SMMS treatment is sufficient to promote 
the growth and migration of human dermal fibroblasts (hDFs); 
the promotion of hDF proliferation and migration is caused by 
significant activation of the ERK1/2 pathway (Kim et al., 2010). 
In addition, SMMS protects skin from UVB irradiation by scav-
enging reactive oxygen species. SMMS treatment has also 
been shown to decrease the UVB radiation-induced erythema 
index and depletion of Langerhans cells in an animal experi-
ment (Kim et al., 2015). Moreover, SMMS protects keratino-
cyte progenitor cells and hDFs against UVB irradiation (Kim 
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et al., 2015).
Although SMMS is effective in skin regeneration, its un-

pleasant odor is a major disadvantage (Kovacheva, 1974; 
Kovatscheva and Popova, 1977). The unpleasant odor may 
be caused by the sulfonium functional group (Hattula and 
Granroth, 1974; Loscos et al., 2008); reportedly, heat causes 
SMMS breakdown and dimethyl sulfide formation during the 
malting process (Loscos et al., 2008). Similarly, cosmetics 
containing SMMS have an unpleasant odor, which intensifies 
over time. As mentioned above, SMMS has wound-healing 
and UVB-protective effects on skin; however, the unpleasant 
odor limits its application as a cosmetic raw material. There-
fore, in the present study, we synthesized 50 SMMS deriva-
tives to reduce its odor. Using in vitro activity assays with hDFs 
and an immortalized human keratinocyte cell line (HaCaT), we 
identified two SMMS derivatives that exhibited skin-protective 
effects and can thus be used as cosmetic raw materials.

MATERIALS AND METHODS 

Synthesis of compounds 15 and 16
Benzaldehyde (0.74 mM) was added to a stirred solution 

of L-cysteine or DL-homocysteine (0.74 mM) in ethanol (4 
mL) and distilled water (1 mL). After 3 days of stirring at room 
temperature, the precipitate was suction-filtered, washed with 
ether, and dried under vacuum to yield the corresponding 
products as white solids.

Cell culture
hDFs and HaCaT cells were cultured in Dulbecco’s Modi-

fied Eagle’s Medium (DMEM; low, high glucose; Hyclone, 
Thermo Scientific, Logan, UT, USA) with 10% fetal bovine se-
rum (FBS; Gibco, Invitrogen, Carlsbad, CA, USA), 1% penicil-

lin, and streptomycin (Gibco) at 37°C in 5% CO2 in a humidi-
fied atmosphere (Kim et al., 2015, 2016). The hDF and HaCaT 
media were replaced with fresh media every 2 days.

Cell proliferation assay using InCu safe system
HaCaT cells (4×104/well) and hDFs (3×104/well) were seed-

ed into six-well plates in DMEM with 10% FBS and cultured 
for 24 h; subsequently, they were starved with serum-free 
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Fig. 1. Screening of S-methylmethionine sulfonium (SMMS) derivatives in human dermal fibroblasts (hDFs). Effect of SMMS derivatives (10 
µM) on hDF proliferation. **p<0.01, n=3. All error bars indicate SEM.
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DMEM media for 16 h. Next, cells were treated with SMMS 
and its derivatives and then incubated for 3-5 days in InCu 
safe (Panasonic, Osaka, Japan) to automatically analyze cell 
proliferation index. Proliferation percentage was analyzed us-
ing the InCu Cyte zoom2014A program.

UV irradiation
Cells were seeded in plates, and after 24 h, they were 

washed with phosphate-buffered saline (PBS) and covered 
with a thin layer of PBS prior to UV exposure. The culture 
plate lid was removed, and cells were irradiated (UVA: 7 J/
cm2; UVB: 120 mJ/cm2) in a dark box. As the UVA irradiation 
source, a UVA lamp (TUV 15W/G15 T8) purchased from Phil-
ips (Groningen, The Netherlands) was used. The UVB irradia-
tion apparatus (BLE-1T158) was obtained from Spectronics 
(Westbury, NY, USA). The incident dose of UVA or UVB was 
measured using a Waldmann UV meter (model No. 585100; 
Waldmann Co., Villingen-Schwenningen, Germany). After UV 
irradiation, PBS was replaced with culture medium, and then 
cells were incubated under standard conditions for 24 h prior 
to analysis.

MTT assay
UV-irradiated cells were incubated in DMEM in the pres-

ence or absence of SMMS and its derivatives for 48 h, and 
then an MTT assay was performed (Kim et al., 2016). The 
MTT solution (5 µg/mL in PBS) was added to each well at 5% 
of the medium volume. The cells were incubated at 37°C for 2 

h and the supernatant was removed. Dimethyl sulfoxide was 
then added in order to dissolve the formazan crystals and the 
absorbance was measured at 595 nm using an ELISA reader 
(TECAN, Grodig, Austria).

BrdU labeling assay
For the 5-bromo-2′-deoxyuridine (BrdU) labeling assay of 

hDFs or HaCaT cells, 5×103 cells were seeded in six-well 
plates and were irradiated with 120 mJ/cm2 of UVB. Next, the 
cells were incubated in DMEM in the presence or absence 
of SMMS derivatives for 48 h, and then BrdU labeling was 
performed. BrdU (Sigma-Aldrich, St. Louis, MO, USA) was 
added to the cell culture media at a final concentration of 100 
µM and incubated for 2 h at 37°C in 5% CO2. The cells were 
fixed with 4% paraformaldehyde, incubated with mouse an-
ti-BrdU (1:500) (Abcam, Cambridge, MA, USA) overnight at 
4°C, and then incubated with Alexa Fluro 488 goat anti-mouse 
IgG. Immunofluorescence staining was imaged using a ZEISS 
LSM710 confocal microscope (Invitrogen, NY, USA).

RT-polymerase chain reaction (PCR)
Total RNA was extracted from hDFs using TRIzol reagent, 

and reverse transcription was performed to obtain cDNA. 
The following oligonucleotides were used as primers: colla-
gen type I (5′-TAGG-GTCTAGACATGTTCAGCTTTGT-3′ and 
5′-GTGATTGG TGGGATGTCTTCGT-3′), MMP-1 (5′-AGAT-
GTGGAGTGCCTGATGT-3′ and 5′-AG-CTA GGGTACAT-
CAAAGCC-3′), and the control glyceraldehyde 3-phosphate 
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dehydrogenase (GAPDH) (5′-CGAGA-TCCCTCCAAAAT-
CAA-3′ and 5′-TGTGGTCATGAGTCCTCCC A-3′). PCR am-
plification of cDNA was performed in a total volume of 30 µL 
under the following conditions: an initial denaturation at 95°C 
for 5 min; 35 cycles of 95°C for 30 s, 54°C for 20 s, and 72°C 
for 30 s; and a final extension at 72°C for 10 min. The gapdh 
mRNA level was used for sample standardization.

Statistical analysis
All data are representative of independent experiments 

performed in triplicate. The statistical significance of differ-
ences among groups was tested using a Student’s t-test, and 
p<0.05, p<0.01, and p<0.001 were considered as significant. 

RESULTS

Screening of SMMS derivatives using hDFs
To increase SMMS stability, we synthesized 50 SMMS de-

rivatives and screened their proliferative and UVB-protective 
effects on hDFs. As shown in Fig. 1, compounds 15, 16, and 
22 increased hDF proliferation at a concentration of 10 µM 
(Fig. 1). UVB irradiation (120 mJ/cm2) significantly reduced 
hDF survival (Fig. 2). However, treatment with compounds 5, 
9, 15, 16, 17, 20, and 22 following UVB irradiation increased 
hDF survival (Fig. 2). Although compounds 5 and 9 were ef-
fective in protecting hDFs against UVB irradiation (Fig. 2), 
they are degradable and have an unpleasant odor (data not 
shown). The structures of compounds 17, 20, and 22 are simi-

lar to those of compounds 15 and 16 (Supplementary Fig. 1). 
However, the proliferative and protective effects of compounds 
17, 20, and 22 were not as good as those of 15 and 16 (Fig. 1, 
2). Therefore, we further examined the skin-protective effects 
of compounds 15 and 16 in hDFs and HaCaT cells. 

Characterization of compounds 15 and 16
Compound 15 (Fig. 3A) comprises (2S,4S)- and (2R,4S)-

2-phenylthiazolidine-4-carboxylic acid and appears as a white 
solid; 1H NMR (400 MHz, DMSO-d6) δ 7.25-7.52 (m, 5H), 5.67 
(s, 0.6H), 5.50 (s, 0.4H), 4.23 (dd, J=4.8, 4.8 Hz, 0.6H), 3.90 
(dd, J=7.6, 8.0 Hz, 0.4H), 3.28-3.40 (m, 1H), 3.06-3.16 (m, 
1H) (Fig. 3B). Compound 16 (Fig. 3A) comprises (2S,4R)-, 
(2S,4S)-, (2R,4R)-, (2R,4S)-2-phenyl-1,3-thiazinane-4-car-
boxylic acid and appears as a white solid; 1H NMR (400 MHz, 
DMSO-d6) δ 7.28-7.45 (m, 5H), 5.27 (s, 1H), 3.60 (dd, J=3.2, 
12 Hz, 1H), 3.19-3.26 (m, 1H), 2.88-2.93 (m, 1H), 2.04-2.08 
(m, 1H), 1.50 (m, 1H) (Fig. 3B).

Proliferative and protective effects of SMMS derivatives 
on hDFs

As we initially measured the proliferative and protective 
effects of compounds 15 and 16 at a concentration of 10 
µM (Fig. 1, 2), we further examined the protective effects of 
compounds 15 and 16 on hDFs in a time- or dose-dependent 
manner. SMMS and its derivatives, compounds 15 and 16, 
increased the proliferation ratio in a time-dependent manner 
for 5 days (Fig. 4A, 4B). Compounds 15 and 16 increased hDF 
proliferation in a dose-dependent manner up to 100 µM con-
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centration (Fig. 4C, 4D). Compounds 15 and 16 restored the 
reduced hDF survival and proliferation following UVB irradia-
tion up to 100 µM concentration (Fig. 5A–5D). In addition, in 
hDFs, these compounds recovered the expression of collagen 
type I mRNA that had been downregulated by UVB irradiation 
(Fig. 5E). In hDFs, these compounds also restored the expres-
sion of metalloproteinases, MMP-1, and MMP-2 that had been 
upregulated by UVB irradiation (Fig. 5F, 5G). Furthermore, 
SMMS and compounds 15 and 16 protected hDFs from UVA 
irradiation (Supplementary Fig. 2; UVA dose: 7 J/cm2). These 
results suggested that SMMS derivatives increased hDF sur-
vival and proliferation and protected them against UV irradia-
tion by regulating the expression of collagen type I and MMPs.

Proliferative and protective effects of SMMS derivatives 
on HaCaT cells

We next examined the proliferative and protective effects 
of SMMS derivatives on HaCaT cells. Compound 15 did not 
increase HaCaT cell proliferation (Fig. 6A); however, it recov-
ered their survival and proliferation that had been decreased 
by UVB irradiation (Fig. 6C, 6E, and 6F). Compound 16 in-
creased the HaCaT cell proliferation (Fig. 6B) and also recov-
ered their survival and proliferation that had been decreased 
by UVB irradiation (Fig. 6D–6F). These results suggested that 
SMMS derivatives increased HaCaT cell proliferation and sur-
vival by protecting them against UVB irradiation.

DISCUSSION

In the present study, we synthesized 50 SMMS deriva-
tives and investigated whether these compounds exhibited 
increased stability and reduced unpleasant odor. We then per-
formed in vitro activity assays using hDFs and HaCaT cells 
and identified two SMMS derivatives (compounds 15 and 16) 
that increased their proliferation and survival. Compound 15 
comprises (2S,4S)- and (2R,4S)-2-phenylthiazolidine-4-car-
boxylic acid, and compound 16 comprises (2S,4R)-, (2S,4S)-, 
(2R,4R)-, and (2R,4S)-2-phenyl-1,3-thiazinane-4-carboxylic 
acid. These compounds protect skin cells against UVB irradia-
tion. These SMMS derivatives are easy to synthesize and are 
effective for skin repair and regeneration; thus, they can be 
developed as cosmetic raw materials.

We first synthesized linear vitamin U derivatives with struc-
tures similar to vitamin U containing a sulfonium ion (i.e., com-
pounds 5 and 9 that were effective in protecting hDFs against 
UVB). However, these compounds were degradable and had 
an unpleasant odor at room temperature. Therefore, we cy-
clized the vitamin U derivatives and found that compounds 15 
and 16 also increased the proliferation and survival of hDFs 
and HaCaT cells. Compared with the sulfonium ion-containing 
vitamin U derivatives, compounds 15 and 16 are odor-free. 
Although compounds 17, 20, and 22 slightly increased hDF 
survival following UVB irradiation, these compounds were not 
as potent as compounds 15 and 16 in terms of hDF prolifera-
tion and protection. 

In addition to skin-protective effects, compound 15 and 
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16 do not have an unpleasant odor in either solid or liquid 
form. As the unpleasant odor is caused by the degradation of 
the sulfonium functional group and the formation of dimethyl 
sulfide, we synthesized SMMS derivatives containing a cy-
clic ring to avoid degradation and dimethyl sulfide formation. 
Therefore, compounds 15 and 16 do not have an unpleasant 
order in either solid or liquid and are promising as cosmetic 
raw materials.

Compound 15 comprises (2S,4S)- and (2R,4S)-2-phenyl-
thiazolidine-4-carboxylic acid. It was originally synthesized to 
evaluate its anticancer activities. Compound 15 is active as a 
cysteine precursor; however, it has been shown to have no 
effect on the growth of a methionine-dependent tumor in rats 
(Recasens et al., 1992). In addition, a series of substituted 
2-phenylthiazole-4-carboxamide derivatives have been syn-
thesized as potential cytotoxic agents and evaluated against 
three human cancer cell lines (Aliabadi et al., 2010). However, 
in the present study, we found that compound 15 increased 
the proliferation and survival of hDFs and HaCaT cells. In ad-
dition, 2-substituted thiazolidine-4(R)-carboxylic acids act as 
prodrugs of L-cysteine and protect mice against acetamino-
phen hepatotoxicity (Nagasawa et al., 1984), indicating that 
compound 15 is cytoprotective. Furthermore, (2R/S,4R)-2- 
(2,4-dimethoxyphenyl) thiazolidine-4-carboxylic acid inhibits 
the L-DOPA oxidase activity of mushroom tyrosinase and can 
be used to inhibit melanin synthesis. Taken together, these 
findings indicate that compound 15 is a promising candidate 
for use as a skin-rejuvenating agent.

Compound 16 comprises (2S,4R)-, (2S,4S)-, (2R,4R)-, and 
(2R,4S)-2-phenyl-1,3-thiazinane-4-carboxylic acid. To date, 
no report on the direct pharmacological effect of compound 16 
has been published. To our knowledge, the present study is 
the first to demonstrate that compound 16 increases skin cell 
proliferation and protects skin cells against UVB irradiation. In 
addition, compound 16 is more effective than compound 15 in 
promoting HaCaT cell proliferation and is easy to synthesize 
without degradation at room temperature. Therefore, com-
pound 16 can be developed as a more promising cosmetic 
raw material than compound 15.

Compounds 15 and 16 also regulate collagen type I, MMP-
1, and MMP-2 expression. They restore collagen type I ex-
pression downregulated by and MMP expression upregulated 
by UVB exposure (Fig. 5E–5G). The collagenous compo-
nent of the dermal extracellular matrix is responsible for the 
strength and resiliency of skin and is intimately involved in the 
pathology of photoaging. In photoaged human skin, collagen 
expression is substantially reduced in the papillary dermis; 
this reduction results from reduced procollagen biosynthesis 
and increased enzymatic breakdown via the action of MMPs 
(Kim et al., 2007). Thus, compounds 15 and 16 may help in 
the recovery of photoaged skin by regulating collagen and 
MMP expression.
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