• Title/Summary/Keyword: S-glycosides

Search Result 132, Processing Time 0.027 seconds

Effects of Nutrients and Culture Conditions on the Cell Growth and the Flavonol Glycosides Production in Cell Cultures of Ginkgo biloba (Ginkgo biloba 세포배양에서 배지 및 배양조건이 세포성장 및 Flavonol Glycosides 생합성에 미치는 영향)

  • 이원규;유연우변상요정헌관
    • KSBB Journal
    • /
    • v.8 no.1
    • /
    • pp.55-61
    • /
    • 1993
  • Cell lines of Ginkgo biloba were derived from different plant parts and from ten varieties spanning various geographic locations. They had various properties of growth and product formation. More than three flavonol glycosides were present in low concentration in callus and suspension cultures. Cell growth and biosynthesis of flavonol glycosides were found to be affected by medium composition. Culture conditions which influenced cell growth and product formation were also examined. Light stimulated the flavonol glycosides biosynthesis and ten times higher flavonol glycosides content was obtained as compared with the result without light.

  • PDF

Antigenotoxicity of Quercetin and Its Glycosides Against Benzo(a)pyrene-induced Genotoxicity (퀘르세틴 및 퀘르세틴 배당체들의 벤조피렌에 대한 유전독성억제효과)

  • Kim, Jeong-Han;Heo, Moon-Young
    • YAKHAK HOEJI
    • /
    • v.42 no.4
    • /
    • pp.414-421
    • /
    • 1998
  • In order to compare the suppressive effect of quercetin and its glycosides, such as quercitrin (quercetin-3-rhamnoside), isoquercitrin (quercetin-3-glucoside), hyperin (querceti n-3-galactoside)and rutin (quercetin-3-rhamnosyl glucoside), on the genotocicity by benzo(a)pyrene(B(a)P), in vitro sister chromatid exchange(SCE) test using mouse spleen lymphocytes and in vivo micronucleus test using mouse peripheral blood were performed. B(a)P-induced SCEs in vitro were slightly decreased by the simultaneous treatment of quercetin and its glycosides, although there was no significant decrease. On the other hand, MNU induced micronucleated reticulocytes(MNRL7s) in vivo were significantly decreased with a dose-dependent manner in all compounds tested. However, there were no differences between quercetin aglycone and glycosides in the suppressive effects under experimental condition of this study. To elucidate, the action mechanism of quercetin aglycone and its glycosides against B(a)P-induced genotoxicity, the assay of DNA binding with B(a)P was studied. Quercetin aglycone and its glycosides inhibited B(a)P metabolism in the presence of S-9 mix and decreased the B(a)P/DNA binding in the calf thymus DNA with S-9 mix. These results suggest that antigenotoxicity of quercetin antiglycosides on B(a)P-induced genotoxicity is due to decrease of DNA binding with B(a)P through the inhibition of metabolism with B(a)P in the calf thymus DNA. Therefore, quercetin and its glycosides may act as an antigenotoxicity agent and may be useful as a chemopreventive agent of polycyclic aromaic hydrocarbons like B(a)P.

  • PDF

Seasonal variations of triterpene glycosides contents in the leaf of Centella asiatica (L.) Urban (병풀 잎에서 triterpene glycosides의 시기별 함량변화)

  • Kim, Ok-Tae;Kim, Min-Young;Kim, Soo-Joung;Kim, Yu-Jeong;Kim, Kwang-Soo;Ahn, Jun-Cheul;Kim, Si-Wouk;Hwang, Baik
    • Korean Journal of Medicinal Crop Science
    • /
    • v.10 no.5
    • /
    • pp.375-378
    • /
    • 2002
  • The seasonal variation of two triterpene glycosides, madecassoside and asisaticoside, in the aerial parts of Centella asiatica from May through October was investigated. In leaves, the highest level of triterpene glycosides content was about 108.1 mg/g in September. In petiols, the content was as low as 19.02 mg/g. According to the experimental results obtained, we found that Centella asiatica leaf can accumulate the triterpene glycosides and September is the optimal season for the collection.

Effects of Dammarane Glycosides of Panax ginseng on Cholinergic Neurons in Primary Cultured Chicken Embryonic Brain Cells (일차배양한 계배 뇌세포 내의 콜린성 신경에 대한 인삼 Dammarane계 Glycosides의 작용)

  • Kim, So-Ra;Park, Mi-Jung;Huh, Hoon;Lee, Heum-Sook;Kim, Young-Choong
    • YAKHAK HOEJI
    • /
    • v.38 no.4
    • /
    • pp.401-409
    • /
    • 1994
  • The cholinergic activity of dammarane glycosides of Panax ginseng was examined both morphologically and chemically on primary cultures of chicken embryonic brain cells. When primary cultured chicken embryonic cells were treated with $50\;{\mu}g/ml$ of total dammarane glycosides of Panax ginseng followed by the exposure to 10mM atropine for 48 hr, lactate dehydrogenase levels within the cells remained at 36% of untreated control values while atropine-treated controls fell to 0% lactate dehydrogenase. It was found that cholinergic activity was mainly exerted by the panaxadiol glycosides. The treatment of the cells with $50\;{\mu}g/ml$ of panaxadiol glycosides followed by the exposure to atropine, lactate dehydrogenase levels within the cells remained at 60% of untreated control values. Ginsenoside $Rb_1$, a component of panaxadiol glycosides, was found to exert the cholinergic activity keeping the lactate dehydrogenase levels within the cells at 70% of untreated control values. The cholinergic activity of ginsenoside $Rb_1$ seems to be exerted through acting on the $Ca^{2+}$ channel in cultured brain cells.

  • PDF

The Effect of Dammarane Glycosides of Panax ginseng on Primary Cultured Chicken Brain Cells (인삼 Dammarane Glycoside류 분획물이 일차배양한 계배의 뇌세포에 미치는 영향)

  • Park, Mi-Jung;Song, Jin-Ho;Kim, Young-Choong
    • YAKHAK HOEJI
    • /
    • v.33 no.1
    • /
    • pp.39-45
    • /
    • 1989
  • Effects of dammarane glycosides of Panax ginseng on primary cultured chicken embryonic brain cells were studied by microscopic observation and determination of the activity of pyruvate dehydrogenase complex (PDHC). Brain cells were prepared from the brain of 10-day-old chicken embryo and cultured with either a standard medium consisted of 85% Dulbecco's Modified Eagle Medium (DMEM), 10% horse serum and 5% chicken embryonic extracts or a deficient medium consisted of 90% DMEM and 10% horse serum. It was observed that dammarane glycosides of Panax ginseng seemed to show the tendency to stimulate the neurite outgrowth of brain cells which were cultured with a deficient medium under microscopic observation. The activity of PDHC in brain cells cultured with a deficient medium was increased by dammarane glycosides of Panax ginseng.

  • PDF

The Effect of Dammarane Glycosides of Panax ginseng on Primary Cultured Chicken Embryonic Muscle Cells (인삼의 dammarane계 glycosides 분획물이 일차 배양한 계배의 근육세포에 미치는 영향)

  • Jung, Young-Kyeong;Park, Mi-Jung;Song, Jin-Ho;Kim, Young-Choong
    • YAKHAK HOEJI
    • /
    • v.33 no.3
    • /
    • pp.161-166
    • /
    • 1989
  • Effects of dammarane glycosides of Panax ginseng on primary cultured chicken embryonic skeletal muscle cells were studied by microscopic observation and determination of the activity of acetylcholinesterase. Muscle cells were prepared from the breast of 12-day-old chicken embryo and cultured with either a medium consisted of 87.5% Dulbecco's Modified Eagle Medium (DMEM), 10% horse serum and 2.5% chicken embryonic extract or a medium consisted of 90% DMEM and 10% horse serum. It was observed that dammarane glycosides of Panax ginseng seemed to show the tendency to stimulate the growth and the differentiation of the muscle cells cultured with a medium consisted of 90% DMEM and 10% horse serum under microscopic observation. The activity of acetylcholinesterase in the muscle cells cultured with a medium consisted of 90% DMEM and 10% horse serum was increased by dammarane glycosides of Panax ginseng.

  • PDF

Current Status of Korean Ginseng Research (한국인삼론(韓國人蔘論))

  • Han, Byung-Hoon
    • Korean Journal of Pharmacognosy
    • /
    • v.3 no.3
    • /
    • pp.151-160
    • /
    • 1972
  • Recent achievements of scientific research on the pharmacologic activities and the chemical problems of dammalene glycosides, which are considered to be effective principles of Korean ginseng, are reviewed and analyzed in view of structure-activity relationship. 1) S. Shibata and his co-workers detected 12 glycoside spots of dammalene series on the two dimensional T.L.C. of total glycoside fraction from Japanese ginseng, and designated them Ginsenoside Rx(x=a, b, c, g, h, etc.) in the order of increasing Rf-value. The aglycones of those glycosides were characterized to be protopanaxadiol for the Ginsenoside $Rx(x=a,\;b_{1},\;b_{2},\;c,\;d,\;e,\;f)$ and protopanaxatriol for the Ginsenoside $Rx(x=g_{1},\;g_{2},\;g_{3},\;h_{1}\;'h_{2})$. Using Korean ginseng as the material for our study, the author and his coworkers isolated a new dammalene glycoside(Panax Saponin C), which comes under the category of protopanaxadiol glycosides based on the classification of S. Shibata et al., and characterized this saponin to be the glycoside of protopanaxatriol series. Furthermore, Panax Saponin C dissociated into $two\;components(C_{1}\;and\;C_{2}-acetate)$ by acetylation, both of which returned to original Panax Saponin C by deacetylation. Based on this result, more than 13 glycoside components of dammalene series will be expected in the Korean ginseng. 2) The structures of protopanaxadiol and protopanaxatriol, the genuine aglycones of dammalene glycosides, are fully established to be structural analogues by S. Shibata and his co-workers, therefore antagonistic and/or analogical activities will be expected for the pharmacologic activities of these glycoside series of structural analogues. K. Takaki and his co-workers found central nervous system (CNS) stimmulant activity from the glycosides of protopanaxatriol series and CNS-depressant activity from the glycosides of protopanaxadiol series. On the other hand, the author and his co-workers found stimmulating activity on the protein synthesis from both the series of dammalene glycosides with delayed and long-lasting characteristics. This delayed and long-lasting characteristics were also observed in the anti-inflammatory activity of glycosides of protopanaxatriol series on their time course tendency. For the convenience's sake of argument, pluralistic pharmacologic activities of dammalene glycosides, which were observed by many workers at various pharmacologic site, may be classified into two main categories; one is pan-cellular activity and the other is organ specific activity to the certain tissue which is a mass of cells differentiated to a certain direction for their special functions in the body. Based on the data of K. Takaki and those of the authors, following assumption will be probable; Pharmacologic activities of both series of glycosides of protopanaxadiol and protopanaxatriol aglycones may be antagonistic on their tissue-specific activities and analogic on their pan-cellular activities. Therefore, the mixture of these two series of glycosides in an appropriate ratio, as the case of total extract of Korean ginseng, will be probably beneficial to the host by increasing the synthesis of some functional proteins, due to the additive action of pan-cellular activity, and with the disappearance of any significant behavioral symptoms due to the antagonism of tissue specific activity. This fact will probably be the main reason why classical trials of pharmacologists failed in re-discovering the efficacy of Korean ginseng with their behavioral test. 3) The author and his co-workers achieved the synthesis of $C^{14}-labelled\;Panax\;Saponin\;A\;on\;C_{25}-C_{27}\;position\;of\;aglycone$ in the interest of tracer studies in vivo. The method will be applicable to other dammalene glycosides regardless of their chemical structure. 4) The author and his co-workers converted chemically betulafolienetriol, a triterpene component of Betula platyphylla, to the protopanaxadiol, one of genuine aglycone of dammalene glycosides.

  • PDF

The Effect of Ginsenosides on Galactosamine-induced Hepatotoxicity (인삼 사포닌이 간세포 독성에 미치는 영향)

  • kim, Sun-Yeou;Kim, Young-Choong;Byun, Soon-Jung;Kim, Eun
    • Korean Journal of Pharmacognosy
    • /
    • v.22 no.4
    • /
    • pp.219-224
    • /
    • 1991
  • Liver protective effects of ginsenosides as well as fractions of dammarane glycosides of Panax ginseng were studied using galactosamine (GalN)-induced cytotoxicity in primary cultured rat hepatocytes. Preventing effects on GalN-induced hepatotoxicity were found both microscopic observation and determination of GPT level with total dammarane glycosides fraction and $20(S)-ginsenoside-Rb_1$ as well as $20(S)-ginsenoside-Rg_1$ at the concentration of $50{\mu}g/ml$. The syntheses of both protein and RNA were significantly increased by the treatment of $50{\mu}g/ml$ of total dammarane glycoside fraction, $20(S)-ginsenoside-Rb_1$, -Rc, -Re and $-Rg_1$, respectively in both normal and GalN-induced cytotoxic hepatocytes.

  • PDF

Phytochemical Studies on Lonicerae Flos (1) - Isolation of Iridoid Glycosides and other Constituents

  • Lee, Eun-Ju;Lee, Joo-Young;Kim, Ju-Sun;Kang, Sam-Sik
    • Natural Product Sciences
    • /
    • v.16 no.1
    • /
    • pp.32-38
    • /
    • 2010
  • From the polar fractions of a 70% EtOH extract of the flower buds of Lonicera japonica (Caprifoliaceae), ten constituents were isolated and identified as iridoid glycosides 7-dehydrologanin (7-ketologanin, 2), secologanin dimethyl acetal (3), (E)-aldosecologanin (centauroside, 5), dimethyl secologanoside (6), secoxyloganin (7) and epivogeloside (8). Other identified constituents were 1-O-$\beta$-D-glucopyranosyl-(2S,3S,4R,8E/Z)-2-[(2R)-2-hydroxy(docosanoyl, tricosanoyl, tetracosanoyl, pentacosanoyl)amino]-8-octadecene-1,3,4-triol (1), uracil (4), D-mannitol (9), and sucrose (10). Among them, 1, 2, 4, and 10 were isolated for the first time from this plant.

Action of Dammarane-Type Triterpenoidal Glycosides and Their Aglycones on Lipid Membranes (지질막에 대한 Dammarane-Type Triterpenoidal Glycosides와 그 Aglycones의 작용)

  • Kim, Yu.A.;Park, Kyeong-Mee;Hyun, Hack-Chul;Song, Yong-Bum;Shin, Han-Jae;Park, Hwa-Jin
    • Journal of Ginseng Research
    • /
    • v.20 no.3
    • /
    • pp.269-273
    • /
    • 1996
  • We investigated the effects of ginseng glycosides and their aglycones on processes of single ion channel formation and channel properties. The glycosides, Rg, and Rb, , and their aglycones, 20-(S)-protopanaxatriol (PT) and 20-(S)-protopanaxadiol (PD) increased the membrane permeability for ions. PT, PD, Rg1, and Rb1; at concentrations of 0.5, 3.0, 10.0 and 30.0 $\mu\textrm{g}$/ml respectively; Induced single ion channel fluctuations with the life times in the range of 0.1~1005 in open states and conductances from 5 to 30 pS in 1 M KCI. At high concentrations of these substances, rapid fluctuations of transmembrane ion current with amplitude from hundred pS to dozen nS were observed. Against other substances, ginsenoside Rbl began to increase the membrane conductance at concentration of about 60 $\mu\textrm{g}$/ml without fluctuation of single ion channel. Membranes treated with PT, PD, Rg1 and Rb1 are more permeable to K+, than to Cl while zero current membrane potentials with 10 gradients of KCI were 12, 16, 8, 25 mV respectively. Key words : Membrane conductance, single ion channel, ginsenosides.

  • PDF