• Title/Summary/Keyword: S-N fatigue

Search Result 599, Processing Time 0.029 seconds

Construction of a Design Curve for Fatigue Model Using Bootstrap Method (붓스트랩방법을 이용한 피로모형의 설계곡선 설정)

  • 서순근;조유희
    • Journal of Korean Society for Quality Management
    • /
    • v.30 no.4
    • /
    • pp.106-119
    • /
    • 2002
  • The fatigue curve with estimated parameters represents the estimate of the median or mean life at a given applied stress But, in order to assist a designer in making decisions regarding the fatigue failure mode, it is common practice to construct a design curve on the lower or safe side of data. In this study, to overcome the limitations(i.e., no runout, equal variance, and quality of the approximation, etc) of Shen, Wirsching, and Cashman's method which suggested the approximate design curve for nonlinear models using tolerance interval constructed by Owen's method, an algorithm to find design curves under the fatigue model using a parametric bootstrap method, is proposed and illustrated with multiple fatigue data sets.

Characteristic of fatigue properties with tension and bending loading using high strength steel wire (고강도 강선의 인장 및 회전굽힘 피로특성)

  • Woo, Byung-Chul;Kim, Sang-Soo;Kim, Byung-Guel;Suh, Chang-Min
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.274-279
    • /
    • 2000
  • The overhead transmission wires operating both at warm temperature and tighten state for a long period of time in a power transmission plant are degraded by air pollution, wind, creep and slip between steel wire and aluminium conductor. The objective of this study is to investigate a high carbon steel wire. We tested for basic mechanical properties and 3 types fatigue behavior, tension-tension, 4 points bending and 3 points bending fatigues. In this study, a conventional fatigue strengths between 4 points bending and tension-tension fatigue were determined by Gerber, Sorderberg and Goodman's theory and we investigated S-N diagram for bending and tensile loading.

  • PDF

The Fatigue behavior of strengthened bridge deck with Carbon Fiber Rod (탄소섬유 Rod로 성능향상된 교량 바닥판의 피로거동)

  • 심종성;김민수;김영호;주민관
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.313-318
    • /
    • 2002
  • The use of carbon fiber rods is a promising technology of increasing flexural and shear strength of deficient reinforced concrete members. The purpose of this experimental study is to investigate the fatigue behavior and strengthening effects of the strengthened bridge deck with isotropic and othortropic carbon fiber rod. This study shows a fatigue loading, compliance and S-N Curve between strengthened isotropically and othortropically. Then estimate the effective fatigue behavior of RC slab using composite rods that are inserted in high special purposed polymer mortar.

  • PDF

Fatigue Life Prediction of Circular Notched CFRP Laminates (원공조치를 가진 탄소섬유강화 플라스틱 적층판의 피로수명에측)

  • Heo, Jae-Seok;Hwang, Un-Bong;Park, Hyeon-Cheol;Han, Gyeong-Seop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.3
    • /
    • pp.832-842
    • /
    • 1996
  • Fatigue life prediction and fatigue behavior of circular notched carbon fiber reinforced plastic laminates are presented. Point and average stress criteria by Whitney and Nuismer are generalized to fatigue fracture criteria for notched laminates. Residual strength degradation model and the assumptions on the stress redistribution are introduced during the derivation of prediction equations. S-N curve, Basquin's relation, and H and H's FLPE1 are chosen for evaluation of residual strength of unnotched laminates and six prediction equations are derived. Experiments are performed using Graphite/Epoxy laminates whose fiber orientation is $[0$^\circ$/+45$^\circ$/-45$^\circ$/90$^\circ$]s. Presented prediction equations are reasonably close to experimental data and proposed appoach is found to be suitable to predict fatigue life of notched composite laminates.

Compression-Compression Fatigue Behavior of Al-Si-Ca alloy Foams (Al-Si-Ca 합금 폼의 압축 피로 거동)

  • Lee, Chang-Hun;Ha, San;Kim, Am-Kee;Jeong, Gil-Do
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.190-195
    • /
    • 2004
  • The compression-compression fatigue properties of the closed cell Al-Si-Ca alloy foams have been studied. The monotonic and cyclic compressive properties were compared with each other and the fatigue stress-life (S-N) curves were presented. In compression-compression fatigue, the crushing was found to initiate in a single band which broadens gradually with additional fatigue cycles. Progressive shortening of the specimen took place due to a combination of low cycle fatigue failure and cyclic ratcheting which is in accordance with the findings of previous researchers [1-3]. Young's modulus of the foam was found to decrease with the increasing strain in case of fatigue test however in case of monotonic compression test the value of Young's modulus increased with the strain (number of cycles). The endurance limit on the basis of $10^{7}$ cycles obtained by extrapolating the experimental results were 0.98 MPa and 1.70 MPa for load ratios 0.1 and 0.5 respectively which are 34 % and 59 % of the plateau stress.

  • PDF

Fatigue Life Prediction of a Laser Peened Structure Considering Model Uncertainty (모델 불확실성을 고려한 레이저 피닝 구조물의 피로 수명 예측)

  • Im, Jong-Bin;Park, Jung-Sun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.12
    • /
    • pp.1107-1114
    • /
    • 2011
  • In this paper, the fatigue life of a laser peened structure was predicted. In order to calculate residual stress induced by laser peening finite element simulation was carried out. Modified Goodman equation was used to consider the effect of compressive residual stress induced by laser peening in fatigue analysis. In addition, additive adjustment factor approach was applied to consider S-N curve model uncertainty. Consequently, the reliable bounds of the predicted fatigue life of the laser peened structure was determined.

A Study of Crack Propagation and Fatigue Life Prediction on Welded Joints of Ship Structure(I) (선체 용접부의 균열진전 및 피로수명 예측에 관한 연구(I))

  • Kim, Kyung-Su;Ito, Hisashi;Seo, Yong-Seok;Jang, Beam-Sean;Kim, Beam-Il;Kwan, Young-Bin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.6
    • /
    • pp.669-678
    • /
    • 2008
  • The fatigue life of ship structure under cyclic loading condition is made up of initiation and propagation stages. In this study, crack growth test is carried out on large scale structure test specimens and fracture mechanical analysis is performed. The fatigue lives measured from fatigue tests are compared with DNV, Matsuoka and BS 5400 S-N curve. And to predict the crack initiation life, S-N curve, corresponding to crack length 20mm at welded joint, is developed based on hot spot stress range. Also crack propagation life is calculated using crack growth equation. Consequently, computed crack propagation life is compared with experiment results.

The Estimation of Fatigue Strength of Structure with Practical Dynamic Force by Inverse Problem and Lethargy Coefficient (구조물의 피로강도평가를 위한 역문제 및 무기력계수에 의한 실동하중해석)

  • 양성모;송준혁;강희용;노홍길
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.106-113
    • /
    • 2004
  • Most of mechanical structures are composed of many substructures connected to one another by various types of mechanical joints. In automotive engineering, it is important to study these connected structures under various dynamic forces for the evaluations of fatigue life and stress concentration exactly. In this study, the dynamic response of vehicle structure to external forces is classified an inverse problem involving strains from the experiment and the analysis. The practical dynamic forces are determined by the combination of the analytical and experimental method with analyzed strain by quasi-static finite element analysis under unit force and with measured strain by a strain gage under driving load, respectively. In a stressed body, inter-molecular chemical bonds are failed beyond the certain magnitude. The failure of molecular structure in material is considered as a time process of which rate is determined by mechanical stress. That is, the failure of inter-molecular chemical bonds is the fatigue lift of material. This kinetic concept is expressed as lethargy coefficient. And S-N curve is obtained with the lethargy coefficient from quasi-static tensile test. Equivalent practical dynamic force is obtained from the identification of practical dynamic force for one loading point. Using the practical dynamic force and S-N curve, fatigue life of a window pillar is analyzed with FEM under the identified force by the procedure of above mentioned.

An Experimental on the Evalution of Fatigue Crack Propagation of Carbon Steel (탄소강의 피로균열 진전거동 평가에 관한 실험적 연구)

  • 김희송;안병욱
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.5
    • /
    • pp.938-946
    • /
    • 1989
  • Using the CT specimen of carbon steel(SM45C), we estimated the fatigue crack propagation behavior in stable crack propagation range. Furthermore the fatigue crack propagation rate, Acoustic Emission(AE) count rate, and fractography characteristics were also compared among others. The following results were confirmed by experimental observation. Near-threshold stress intensity factor range(.DELTA. $K_{th}$) is influenced by stress ratio but not at the upper limit of stable crack propagation range. As stress intensity factor range(.DELTA.K) and(or) stress amplitude increase (s), both crack propagation rate(da/dN) and AE count rate(dn/dN) increase. Effective stress intensity factor range(.DELTA. $K_{off}$) determined from the crack closure point measurement by AE method is useful for the evaluation of fatigue crack propagation rate. Fractography in stable crack propagation range showed striation, and agreed with the crack propagation rate obtained either by experiment of by the results of microscopic measurements.s.

The Effect of BeHaS (Be Happy and Strong) Program on Self Esteem, Fatigue and Anxiety in Postoperative Care Patients with Breast Cancer (유방암 수술 환자의 추후관리를 위한 베하스(BeHaS) 프로그램이 자아존중감, 피로와 불안에 미치는 영향)

  • Kim, Jong-Im;Min, Hyo-Suk;Park, Sun-Young;Kim, Sun-Ae;Jun, Young-Suk;Lim, Joung-Sun;Kim, So-Hyun;Chang, Eil-Sung
    • Journal of Korean Academy of Fundamentals of Nursing
    • /
    • v.16 no.3
    • /
    • pp.362-369
    • /
    • 2009
  • Purpose: The purpose of the study was to identify effects of the BeHaS program on self esteem, fatigue and anxiety in postoperative care patients with breast cancer who had surgery with, chemotherapy, radiotherapy, with or without current hormone therapy. Methods: This study was a 2-group quasi-experimental research study with a pre and post test design. Fifty-four patients with breast cancer were assigned to the experimental (n=29) or control group (n=25). The BeHaS program which strengthens self esteem through support over a 90-minute period, consists of theme activity (30 minutes), education (15 minutes), group support (15 minutes) and exercise (30 minutes). The experimental group participated in the program once a week for 10 weeks, but the control group was not involved. Data were gathered from October to December, 2008 using a questionnaire with measures of self esteem, fatigue and anxiety. Data were analyzed using t-test with SPSS Win 12.0 to identify differences between the groups. Results: Self esteem was significantly increased (p= .001) and fatigue significantly decreased (p= .013) in the experimental group. But there was no significant difference in anxiety (p= .868). Conclusion: These results suggest that the BeHaS program for patients with breast cancer had beneficial effects on self esteem and fatigue.

  • PDF