• Title/Summary/Keyword: S-Bond

Search Result 1,636, Processing Time 0.03 seconds

The effect of multiple application on microtensile bond strength of all-in-one dentin adhesive systems

  • Son, Sung-ae;Hur, Bock
    • Proceedings of the KACD Conference
    • /
    • 2003.11a
    • /
    • pp.567-567
    • /
    • 2003
  • The purpose of this study was to evaluate the effect of multiple application of all-in-one dentin adhesive system on microtensile bond strength using confocal laser scanning microscope and microtensile bond strength test. The dentin surface of human molars, sectioned to remove the enamel from the occlusal surface were prepared. In group I, Scotchbond Multipurpose(SM, 3M ESPE) was applied by manufature's recommended. In group II, after the all-in-one adhesive, Adper Prompt L-Pop was applied for 15s, and light cured for 10s, the second coat was re-applied and light-cured.(omitted)

  • PDF

Theoretical Studies on the Acid-Catalyzed Hydrolysis of Sulfinamide

  • 김찬경;이익준
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.8
    • /
    • pp.880-886
    • /
    • 1997
  • Ab initio calculations were carried out on the gas phase acid-catalyzed hydrolysis reactions of sulfinamide using the 3-21G* basis sets. Single point calculations were also performed at the MP2/6-31G* level. The first step in the acid-catalyzed hydrolysis of N-methylmethanesulfinamide, Ⅰ, involves protonation. The most favorable form is the O-protonated one, Ⅱ, which is then transformed into a sulfurane intermediate, Ⅲ, by addition of a water molecule. The reaction proceeds further by an intramolecular proton transfer from O to N (TS2), which is followed by N-S bond cleavage (TS3) leading to the final products. The rate determining step is the N-S bond cleavage (TS3) at the RHF/3-21G* level, whereas it becomes indeterminable at the MP2/6-31G*//3-21G* level of theory. However, the substituent effect studies with N-protonated N-arylmethanesulfinamide, ⅩⅢ, at the MP2/6-31G*//3-21G* level support the N-S bond breaking step as rate limiting.

Repair bond strength of resin composite to three aged CAD/CAM blocks using different repair systems

  • Gul, Pinar;Altinok-Uygun, Latife
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.3
    • /
    • pp.131-139
    • /
    • 2020
  • PURPOSE. The purpose of this study is to evaluate the repair bond strength of a nanohybrid resin composite to three CAD/CAM blocks using different intraoral ceramic repair systems. MATERIALS AND METHODS. Three CAD/CAM blocks (Lava Ultimate, Cerasmart, and Vitablocks Mark II) were selected for the study. Thirty-two specimens were fabricated from each block. Specimens were randomly divided into eight groups for the following different intraoral repair systems: Group 1: control group (no treatment); Group 2: 34.5% phosphoric acid etching; Group 3: CoJet System; Group 4: Z-Prime Plus System; Group 5: GC Repair System; Group 6: Cimara System; Group 7: Porcelain Repair System; and Group 8: Clearfil Repair System. Then, nanohybrid resin composite (Tetric Evo Ceram) was packed onto treated blocks surfaces. The specimens were thermocycled before application of repair systems and after application of composite resin. After second thermal cycling, blocks were cut into bars (1 × 1 × 12 ㎣) for microtensile bond strength tests. Data were analyzed using two-way ANOVA and Tukey's HSD test (α=.05). RESULTS. Cimara System, Porcelain Repair, and Clearfil Repair systems significantly increased the bond strength of nanohybrid resin composite to all CAD/CAM blocks when compared with the other tested repair systems (P<.05). In terms of CAD/CAM blocks, the lowest values were observed in Vitablocks Mark II groups (P<.05). CONCLUSION. All repair systems used in the study exhibited clinically acceptable bond strength and can be recommended for clinical use.

EFFECTS OF CHEMICALLY CURED RESIN AND LIGHT CURED RESIN ON SHEAR BOND STRENGTH OF METAL BRACKET AND CERAMIC BRACKET (화학중합형 및 광중합형 레진접착제가 금속 및 도재브라켓의 전단결합강도에 미치는 영향)

  • Yoon, Duk-Sang;Lee, Ki-Soo
    • The korean journal of orthodontics
    • /
    • v.24 no.1 s.44
    • /
    • pp.125-134
    • /
    • 1994
  • This study was designed for comparison of shear bond strengths and failure patterns of four experimental groups which combinated mesh-backed metal brackets and texture based ceramic brackets (Transcend series $2000^{(TM)}$) with chemically cured resin (Mono $Lok2^{(TM)}$) and visible light cured resin $(Transbond^{(TM)})$. Brackets were bonded on the extracted human bicuspids, after etching them by manufacturer's recommand, and the shear bond strengths were measured on the Instron machine after 24 hrs passed in the $37^{\circ}C$ water bath. The results were as follows. 1. Ceramic brackets, transcend series $2000^{(TM)}$, bonded with $MonoLok2^{(TM)}$ showed statistically higher shear bond strength than mesh-backed metal brackets bonded with $MonoLok2^{(TM)}$. 2. There was no significant difference in shear bond strengths between metal and ceramic brackets bonded with $(Transbond^{(TM)})$. 3. Ceramic brackets bonded with both $(Transbond^{(TM)})$) and $MonoLok2^{(TM)}$ showed primarily fractures between brackets adhesive interface. 4. Enamel crack was not found in anyone specimen.

  • PDF

Bond-slip constitutive model of concrete to cement-asphalt mortar interface for slab track structure

  • Su, Miao;Dai, Gonglian;Peng, Hui
    • Structural Engineering and Mechanics
    • /
    • v.74 no.5
    • /
    • pp.589-600
    • /
    • 2020
  • The bonding interface of the concrete slab track and cement-asphalt mortar layer plays an important role in transferring load and restraining the track slab's deformation for slab track structures without concrete bollards in high-speed railway. However, the interfacial bond-slip behavior is seldom considered in the structural analysis; no credible constitutive model has been presented until now. Elaborating the field tests of concrete to cement-asphalt mortar interface subjected to longitudinal and transverse shear loads, this paper revealed its bond capacity and failure characteristics. Interfacial fractures all happen on the contact surface of the concrete track slab and mortar-layer in the experiments. Aiming at this failure mechanism, an interfacial mechanical model that employed the bilinear local bond-slip law was established. Then, the interfacial shear stresses of different loading stages and the load-displacement response were derived. By ensuring that the theoretical load-displacement curve is consistent with the experiment result, an interfacial bond-slip constitutive model including its the corresponding parameters was proposed in this paper. Additionally, a finite element model was used to validate this constitutive model further. The constitutive model presented in this paper can be used to describe the real interfacial bonding effect of slab track structures with similar materials under shear loads.

Bond Splitting Strength and Behavior of GFRP Reinforcement with Roughened Surface (거친표면 GFRP 보강근의 쪼갬부착파괴강도 및 거동 고찰)

  • Moon, Do-Young
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.2
    • /
    • pp.23-29
    • /
    • 2011
  • In this experimental study, bond splitting strength and behavior were evaluated through pull-out tests. The tests were conducted on a GFRP rebar with roughened surface which was produced by Canadian manufacturer. The used variables in this study were rebar diameter, cover depth and compressive strength of concrete. For each variable, five specimens were made and tested to obtain good results. The bond splitting behavior was investigated from the relationship of pull-out force and slip. The experimental bond splitting strength was compared with the predicted strength obtained from the equations presented by some researchers. The results of the comparison demonstrated that the strength could be predicted well by using the Harajli et al's equation.

An Experimental Study on the Effect of Concrete Surface Treatment Methods on the Bond Strength of Metal Spray Coating (콘크리트 표면처리 방법이 콘크리트 표면 금속용사 피막의 부착강도에 미치는 영향에 관한 실험적 연구)

  • Park, Jin-Ho;Kim, Sang-Yeol;Lee, Han-Seung
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.36 no.1
    • /
    • pp.147-154
    • /
    • 2020
  • The exterior finishing of reinforced concrete buildings is one of the important factors to prevent durability and prevent natural environment or disaster such as temperature, snow, wind, rain from the outside as well as external design of buildings. Finishing methods can be divided into wet and dry methods. The wet method using paint is relatively easy to construct, but it requires repair and reinforcement every 1 to 5 years and requires a lot of LCC for maintenance. Finishing method using panel has good durability, but it is difficult to install and expensive. Therefore, in this paper, we evaluate the bond strength for the application of the metal spray method in order to overcome the problems of existing methods. Experimental results show that the sandblast + surface roughness agent(S-R(Y)) has a roughness of 41.16 ㎛ and the bond strength is about 3.19 MPa, which is the highest bond strength. In addition, the grinding + surface roughness agent(G-R(Y)) application showed roughness of about 36.59 ㎛ and secured the bond strength performance of 2.94 MPa.

COMPATIBILITY OF SELF-ETCHING DENTIN ADHESIVES WITH RESIN LUTING CEMENTS (자가부식형 상아질접착제와 레진시멘트와의 적합성에 관한 연구)

  • Kim, Do-Wan;Park, Sang-Jin;Choi, Kyoung-Kyu
    • Restorative Dentistry and Endodontics
    • /
    • v.30 no.6
    • /
    • pp.493-504
    • /
    • 2005
  • This study was performed to investigate the compatibility between 4 dentin adhesives and 4 resin luting cements. Dentin adhesives used in this study were All-Bond 2 (Bisco Inc., Schaumbrug, IL, USA), Clearfil SE-Bond (Kuraray Medical Inc, Osaka, Japan), Prompt L-Pop (3M Dental Products, St. Paul, MN, USA), One-Up Bond F (Tokuyama corp., Tokyo, Japan) Resin luting cements used in this study were Choice (Bisco Inc., Schaumbrug, IL, USA), Panavia F (Kuraray Medical Inc, Osaka, Japan), RelyX ARC (3M Dental Products, St. Paul, MN, USA) Bistite II DC (Tokuyama corp., Tokyo, Japan). Combination of each dentin adhesive and corresponding resin cement was made to 16 experimental groups. Flat dentin surfaces was created on mid-coronal dentin of extracted mandibular third molars, then dentin surface was polished with 320-grit silicon carbide abrasive papers. Indirect resin composite block (Tescera, Bisco) was fabricated. Its surface for bonding to tooth was polished with silicon carbide abrasive papers Each dentin adhesive was treated on tooth surface and resin composite overlay were luted with each resin cement. Each bonded specimen was poured in epoxy resin and sectioned occluso-gingivally into 1.0mm thick slab, then further sectioned into $1.0{\times}1.0mm^2$ composite-dentin beams. Microtensile bond strength was tested at a crosshead speed of 1.0mm/min. The data were analysed by one-way ANOVA and Duncan's multiple comparison tests The results of this study were as follows, 2-step self-etching dentin adhesive which has additional bonding resin is more comparison than tests. self-etching dentin adhesive.

The Synthesis of 2-Methyl-5,5'-gem-Disubstituted-${\Delta}^2$-Thiazolines (2-Methyl-5,5'-gem-Disubstituted-${\Delta}^2$-Thiazoline系 化合物의 合成)

  • Chi Sun Hahn
    • Journal of the Korean Chemical Society
    • /
    • v.7 no.4
    • /
    • pp.230-237
    • /
    • 1963
  • The synthesis of 2-methyl-5,5'-gem-disubstituted-$\Delta^2$-thiazolines has been undertaken by two methods. The first involves the preparation of gem-disubstituted N-or S-acetylamino mercaptan intermediates by ring opening of the corresponding thiiranes with ammonia. The second consists of the ring opening of gem-disubstituted ethylene imines using thiolacetic acid. The thiirane rings have never been opened under conditions as vigorous as that of using sodium amide in liquid ammonia. This is probably due to retardation by the gem-disubstituents. In contrast to this, the corresponding ethylene imine ring opens easily, in spite of the same stereochemical situation. The stabilization of gem-disubstituted cyclic compounds has been discussed from a stereochemical point of view. It has been concluded from the results of this work that the compression effect of gem-disubstitution is not due to bond angle deformation, which was observed by Thorpe and Ingold, but mostly to an electronic bond interaction of the gem-disubstituents and to the hetero atom(s), if any.

  • PDF

Pull-out bond strength of a self-adhesive resin cement to NaOCl-treated root dentin: effect of antioxidizing agents

  • Khoroushi, Maryam;Kachuei, Marzieh
    • Restorative Dentistry and Endodontics
    • /
    • v.39 no.2
    • /
    • pp.95-103
    • /
    • 2014
  • Objectives: This study evaluated the effect of three antioxidizing agents on pullout bond strengths of dentin treated with sodium hypochlorite. Materials and Methods: Root canals of 75 single-rooted human teeth were prepared. Fifteen teeth were irrigated with normal saline for a negative control group, and the remaining 60 teeth (groups 2 - 5) with 2.5% NaOCl. The teeth in group 2 served as a positive control. Prior to post cementation, the root canals in groups 3 - 5 were irrigated with three antioxidizing agents including 10% rosmarinic acid (RA, Baridge essence), 10% hesperidin (HPN, Sigma), and 10% sodium ascorbate hydrogel (SA, AppliChem). Seventy-five spreaders (#55, taper .02, Produits Dentaires S.A) were coated with silica and silanized with the Rocatec system and ceramic bond. All the prepared spreaders were cemented with a self-adhesive resin cement (Bifix SE, Voco Gmbh) in the prepared canals. After storage in distilled water (24 h/$37^{\circ}C$), the spreaders were pulled out in a universal testing machine at a crosshead speed of 1.0 mm/min. Pull-out strength values were analyzed by one-way ANOVA and Tukey's HSD test (${\alpha}$ = 0.05). Results: There were significant differences between study groups (p = 0.016). The highest pullout strength was related to the SA group. The lowest strength was obtained in the positive control group. Conclusions: Irrigation with NaOCl during canal preparation decreased bond strength of resin cement to root dentin. Amongst the antioxidants tested, SA had superior results in reversing the diminishing effect of NaOCl irrigation on the bond strength to root dentin.