The Synthesis of 2-Methyl-5,5'-gem-Disubstituted-${\Delta}^2$-Thiazolines

2-Methyl-5,5'-gem-Disubstituted-${\Delta}^2$-Thiazoline系 化合物의 合成

  • Published : 19631200

Abstract

The synthesis of 2-methyl-5,5'-gem-disubstituted-$\Delta^2$-thiazolines has been undertaken by two methods. The first involves the preparation of gem-disubstituted N-or S-acetylamino mercaptan intermediates by ring opening of the corresponding thiiranes with ammonia. The second consists of the ring opening of gem-disubstituted ethylene imines using thiolacetic acid. The thiirane rings have never been opened under conditions as vigorous as that of using sodium amide in liquid ammonia. This is probably due to retardation by the gem-disubstituents. In contrast to this, the corresponding ethylene imine ring opens easily, in spite of the same stereochemical situation. The stabilization of gem-disubstituted cyclic compounds has been discussed from a stereochemical point of view. It has been concluded from the results of this work that the compression effect of gem-disubstitution is not due to bond angle deformation, which was observed by Thorpe and Ingold, but mostly to an electronic bond interaction of the gem-disubstituents and to the hetero atom(s), if any.

2-Methyl-5,5'-gem-disubstituted-$\Delta^2$-thiazoline系 化合物의 合成을 1,1'-gem-dusubstituted thiiranes의 三員環을 ammonis로 開環하여 骸當하는 N-또는 S-acetyl-amino mercaptan을 얻고 그것을 다시 閉環하는 方法과 또 하나는 같은 三員環인 gem-disubstitutes imines을 thiolacetic acid 로 開環하고 그것을 直接 다시 閉環하여 얻은 두가지 方法에 의하여 硏究하엿다. 前者는 thiirane ring은 gem-disubtitution의 compression 效果에 의하여 極히 安定化되어 여러가지 强力한 反應條件下에서의 sodium amide를 利用한 ammonia nuclephile에 頑强한 抵抗을 나타냈으며 反對로 後者의 三員環 imine은 같은 gem-disubstitution 效果를 받음에도 不拘하고 容易하게 開環하였다. 이 gem-disubstitution 效果에 의한 環狀化合物의 開環阻止性과 閉環促進性을 立體化學的인 見地에서 考察하였으며 本硏究로서 環狀化合物의 安定性에 미치는 gem-disubstitution의 compression 效果는 所謂 Thorpe-Ingold bond angle deformation에 緣由하는 것이 아니고 오히려 gem-dusubstituents와 異節環狀化物內의 hetero atom(s)이 미치는 bond interaction에 起因하다는 結論을 얻었다.

Keywords

References

  1. Compt. rend. trav. lab. Carsberg, Ser. Chim. v.23 K. Linderstrm-Lang;C.F. Jacobsen
  2. J. biol. Chem. v.137 K. Linderstrm-Lang;C. F. Jacobsen
  3. J. Am. Chem. Soc. v.77 J.R. Weisiger;W. Hausmann;L.C. Craig
  4. Glutathione M. Calvin;S. Colwick(ed.)(et al).
  5. J. Am. Chem. Soc. v.80 D. Gardinkel
  6. Protides of the Biological Fluids G. Preaux;R. Lontie
  7. Bull. Soc. Chim. biol. v.40 R.B. Martin;J.T. Edsall
  8. J. Am. Chem. Soc. v.81 R.B. Martin;S. Lowey;E.L. Elsen;J.T. Edsall
  9. J. Chem. Soc. v.1923 C.K. Ingold
  10. J. Org. Chem. v.21 R.F. Brown;N.M. van Gulick
  11. Org. Synth., Coll. v.I H. Hibbert;D.Burt
  12. Org. Synth., Coll. v.I G. Braun
  13. Ber. v.36 W. Ipatiew;E. Leontowitsch
  14. J. Chem. Soc. v.1906 no.II R. Dalebrovx;H. Wuyts
  15. Ber. v.39 A. Klages;J. Kessler
  16. Ber. v.39 C. Paal;E. Weidenkaff
  17. J. Chem. Soc. v.1946 C.C.J. Culvemor;W. Davies;K.H. Pausacker
  18. 37th Ave. Woodside 77
  19. J. Am. Chem. Soc. v.63 T.L. Cairns
  20. Org. Synth., Coll. v.II A. Lachman
  21. Ber. v.15 A Janny
  22. J. Chem. Soc. v.121 F.J. Wilson;I.V. Hopper;A.B. Crawford
  23. J. Am. Chem. Soc. v.46 W.L. Semon;V.R. Damerell
  24. Germen Patent, 631, 016 W. Reppe; F. Nicolai
  25. C.A. v.30
  26. J. Am. Chem. Soc. v.69 H.R. Snyder;J.M. Stewart;J.E. Ziegler
  27. Ber. v.60 Rheinboldt
  28. J. Chem. Soc. v.107 R.M. Beesley;C.K. Ingold;J.F. Thorpe
  29. J. Chem. Soc. v.119 C.K. Ingold
  30. J. Chem. Soc. v.121 G.A.R. Kon;A. Stevenson;J.F. Thorpe
  31. J. Chem. Soc. v.123 C.K. Ingold;E.W. Lanfear;J.F. Thorpe
  32. J. Am. Chem. Soc. v.82 S. Searles Jr.;E.F. Lutz;M. Tamres
  33. J. Am. Chem. Soc. v.82 T.C. Bruice;U.K. Pandit