• Title/Summary/Keyword: S-Band Radar

Search Result 190, Processing Time 0.028 seconds

A Study on Interference Mitigation Method between S-Band Radars using Band Pass Filter (대역통과 필터를 이용한 S-Band 레이더 간의 간섭 회피방안 연구)

  • Seongjoon Pak;Jaeyeon Kim;Tae-Soon Chang
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.2
    • /
    • pp.79-85
    • /
    • 2023
  • To make normal operation of S-Band PSR(Primary Surveillance Radar) which are in operation near distance, Minimizing the mutual frequency interference was studied in this paper. First, the phenomenon of radar receiver was analyzed when the interference between PSR was occurred. And next, the proper S-Band Bandpass filter(BPF) was chosen to deal with the interference. And inhibition performance of BPF was verified by comparative analysis of Radar's RF reception characteristic before and after of BPF application. There is 6.4~7.7 dB passband attenuation when BPF was applied at Radar receiver. So the PSR probability of detection were compared and analyzed to check the radar detection performance was deteriorated or not, And this result proved the usefulness of this study.

Shaping Analysis to decide the Design Condition of a Passive-type Radar Reflector (수동형 레이더 리프렉터의 설계조건 결정을 위한 형상분석)

  • Yim, Wung-Bin;Kim, Woo-Suk
    • Journal of Navigation and Port Research
    • /
    • v.26 no.2
    • /
    • pp.199-207
    • /
    • 2002
  • Radar Cross Sections(RCS) for the radar targets are measured and their performance characteristics are analyzed through computer simulation. In addition, constructional features for the commercial radar reflectors are investigated. Then, the optimum design condition of a passive-type radar reflector was chosen. The results show that the octahedral-type radar reflector with 10$\lambda$ sized circular plates has best performance in X-band($\lambda$=3.2cm). However, to comply with newly adopted 2000 SOLAS regulations, larger sized circular plate is required to provide at both X-band and S-band.

Verification of current and wave data observed with X-band radar at an offshore wind substantiation farm in the Southwest Sea (서남해 해상풍력실증단지에서 X-Band Radar로 관측한 유동 및 파랑 자료 검증)

  • Seung-Sam Choi;Eun-Pyo Lim;Hyung-Rae Lee;Kwang-Seok Moon;In-Sung Jeon;MINSEUK KIM
    • Journal of Wind Energy
    • /
    • v.15 no.1
    • /
    • pp.21-29
    • /
    • 2024
  • In order to respond to environmental changes and various events in the nearby sea area due to the operation of an offshore wind substantiation farm in the Southwest Sea, X-band radar has been installed and operated on a fixed platform since 2018. The X-band radar's monitoring system produces wave and current data through Rutter's Ocean WaveS wave and current (Sigma S6 WaMoS II). In this study, to verify the reliability of the produced data, the accuracy of current and wave data was evaluated by analyzing the correlation with the results obtained by an acoustic doppler current profiler (ADCP). The selected analysis period was a total of 30 days from November 29 to December 28, 2021, the period during which the ADCP survey was conducted. As a result of comparative verification, the current, wave height and peak wave period (Hs > 0.69 m) data observed from the X-band radar showed a high correlation with the results investigated from ADCP. In the future, current and wave data produced by X-band radar are expected to be used as basic data to analyze environmental changes in sea areas and provide information on various events.

Application of X-band polarimetric radar observation for flood forecasting in Japan

  • Kim, Sun-Min;Yorozu, Kazuaki;Tachikawa, Yasuto;Shiiba, Michiharu
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.15-15
    • /
    • 2011
  • The radar observation system in Japan is operated by two governmental groups: Japan Meteorological Agency (JMA) and the Ministry of Land, Infrastructure, Transport and Tourism (MLIT) of Japan. The JMA radar observation network is comprised of 20 C-band radars (with a wavelength of 5.6 cm), which cover most of the Japan Islands and observe rainfall intensity and distribution. And the MLIT's radar observation system is composed of 26 C-band radars throughout Japan. The observed radar echo from each radar unit is first modified, and then sent to the National Bureau of Synthesis Process within the MLIT. Through several steps for homogenizing observation accuracy, including distance and elevation correction, synthesized rainfall intensity maps for the entire nation of Japan are generated every 5 minutes. The MLIT has recently launched a new radar observation network system designed for flash flood observation and forecasting in small river basins within urban areas. It is called the X-band multi parameter radar network, and is distinguished by its dual polarimetric wave pulses of short length (3cm). Attenuation problems resulting from the short wave length of radar echo are strengthened by polarimetric wavelengths and very dense radar networks. Currently, the network is established within four areas. Each area is observed using 3-4 X-band radars with very fine resolution in spatial (250 m) and temporal (1 minute intervals). This study provides a series of utilization procedures for the new input data into a real-time forecasting system. First of all, the accuracy of the X-band radar observation was determined by comparing its results with the rainfall intensities as observed by ground gauge stations. It was also compared with conventional C-band radar observation. The rainfall information from the new radar network was then provided to a distributed hydrologic model to simulate river discharges. The simulated river discharges were evaluated again using the observed river discharge to estimate the applicability of the new observation network in the context of operations regarding flood forecasting. It was able to determine that the newly equipped X-band polarimetric radar network shows somewhat improved observation accuracy compared to conventional C-band radar observation. However, it has a tendency to underestimate the rainfall, and the accuracy is not always superior to that of the C-band radar. The accuracy evaluation of the X-band radar observation in this study was conducted using only limited rainfall events, and more cases should be examined for developing a broader understanding of the general behavior of the X-band radar and for improving observation accuracy.

  • PDF

Merging Radar Rainfalls of Single and Dual-polarization Radar to Improve the Accuracy of Quantitative Precipitation Estimation (정량적 강우강도 정확도 향상을 위한 단일편파와 이중편파레이더 강수량 합성)

  • Lee, Jae-Kyoung;Kim, Ji-Hyeon;Park, Hye-Sook;Suk, Mi-Kyung
    • Atmosphere
    • /
    • v.24 no.3
    • /
    • pp.365-378
    • /
    • 2014
  • The limits of S-band dual-polarization radars in Korea are not reflected on the recent weather forecasts of Korea Meteorological Administration and furthermore, they are only utilized for rainfall estimations and hydrometeor classification researches. Therefore, this study applied four merging methods [SA (Simple Average), WA (Weighted Average), SSE (Sum of Squared Error), TV (Time-varying mergence)] to the QPE (Quantitative Precipitation Estimation) model [called RAR (Radar-AWS Rainfall) calculation system] using single-polarization radars and S-band dual-polarization radar in order to improve the accuracy of the rainfall estimation of the RAR calculation system. As a result, the merging results of the WA and SSE methods, which are assigned different weights due to the accuracy of the individual model, performed better than the popular merging method, the SA (Simple Average) method. In particular, the results of TVWA (Time-Varying WA) and TVSSE (Time-Varying SSE), which were weighted differently due to the time-varying model error and standard deviation, were superior to the WA and SSE. Among of all the merging methods, the accuracy of the TVWA merging results showed the best performance. Therefore, merging the rainfalls from the RAR calculation system and S-band dual-polarization radar using the merging method proposed by this study enables to improve the accuracy of the quantitative rainfall estimation of the RAR calculation system. Moreover, this study is worthy of the fundamental research on the active utilization of dual-polarization radar for weather forecasts.

A Dual-Band Through-the-Wall Imaging Radar Receiver Using a Reconfigurable High-Pass Filter

  • Kim, Duksoo;Kim, Byungjoon;Nam, Sangwook
    • Journal of electromagnetic engineering and science
    • /
    • v.16 no.3
    • /
    • pp.164-168
    • /
    • 2016
  • A dual-band through-the-wall imaging radar receiver for a frequency-modulated continuous-wave radar system was designed and fabricated. The operating frequency bands of the receiver are S-band (2-4 GHz) and X-band (8-12 GHz). If the target is behind a wall, wall-reflected waves are rejected by a reconfigurable $G_m-C$ high-pass filter. The filter is designed using a high-order admittance synthesis method, and consists of transconductor circuits and capacitors. The cutoff frequency of the filter can be tuned by changing the reference current. The receiver system is fabricated on a printed circuit board using commercial devices. Measurements show 44.3 dB gain and 3.7 dB noise figure for the S-band input, and 58 dB gain and 3.02 dB noise figure for the X-band input. The cutoff frequency of the filter can be tuned from 0.7 MHz to 2.4 MHz.

Dual Polarized Array Antenna for S/X Band Active Phased Array Radar Application

  • Han, Min-Seok;Kim, Ju-Man;Park, Dae-Sung;Kim, Hyoung-Joo;Choi, Jae-Hoon
    • Journal of electromagnetic engineering and science
    • /
    • v.10 no.4
    • /
    • pp.309-315
    • /
    • 2010
  • A dual-band dual-polarized microstrip antenna array for an advanced multi-function radio function concept (AMRFC) radar application operating at S and X-bands is proposed. Two stacked planar arrays with three different thin substrates (RT/Duroid 5880 substrates with $\varepsilon_r$=2.2 and three different thicknesses of 0.253 mm, 0.508 mm and 0.762 mm) are integrated to provide simultaneous operation at S band (3~3.3 GHz) and X band (9~11 GHz). To allow similar scan ranges for both bands, the S-band elements are selected as perforated patches to enable the placement of the X-band elements within them. Square patches are used as the radiating elements for the X-band. Good agreement exists between the simulated and the measured results. The measured impedance bandwidth (VSWR$\leq$2) of the prototype array reaches 9.5 % and 25 % for the S- and X-bands, respectively. The measured isolation between the two orthogonal polarizations for both bands is better than 15 dB. The measured cross-polarization level is ${\leq}-21$ dB for the S-band and ${\leq}-20$ dB for the X-band.

A Study on the Design and Implement of The Function of the Sidelobe Blanking of VHF Radar (초단파 레이다의 부엽 차단 기능에 대한 설계 및 구현에 대한 연구)

  • Kim, Ki-Jung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.4
    • /
    • pp.637-642
    • /
    • 2020
  • In this study, the SLB(Sidelobe Blanking)/BLB(Blacklobe Blanking) design of the VHF band radar using the low-frequency band having a relatively larger beam width than the S-band or X-band radar. The antenna of the VHF band has a relatively large beam width, so it is reflected from the side lobe. If the reflected target signal is not processed into sidelobe, the false alarm rate of the radar increases by recognizing it from the main lobe signal. This method of SLB blocking is the elimination of the side lobe signal in the front of the array antenna using the central radiating element of the array antenna, and the blocking of side lobe signal from the antenna rear through BLB receiver block. After completed the radar implementation, The function of blocking of side lobe signals was confirmed through the system unit test by Simulated signal generator. Through this study, it will be used in the implementation of the side-lobe blocking technology of the array antenna for low-frequency band radar with large antenna size and beam width in the future.

Development of Multi-Band Multi-Mode SDR Radar Platform (다중 대역 다중 모드 SDR 레이다 플랫폼 개발)

  • Kwag, Young-Kil;Woo, In-Sang
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.11
    • /
    • pp.949-958
    • /
    • 2016
  • This paper presents the new development result of the multi-band, the multi-mode SDR(Software Defined Radar) platform. The SDR hardware platform is implemented by using the reconfigurable multi-band RF transceiver and antenna modules of S, X, and K-bands, and a programmable signal processing module. The SDR software platform is implemented by using the multi-mode waveform generation of CW, Pulse, FMCW, and LFM Chirp as well as the adaptable algorithm library of signal processing and open API software modules. Through the integrated test of the SDR platform, the operational performance was verified in real-time. Also, through the field-application test, the ground target and air-vehicle drone target were successfully detected and their test results were presented.

Design and Fabrication of C-Band GaN Based on Solid State High Power Amplifier Unit for a Radar System (레이다용 C-대역 GaN 기반 고출력전력증폭장치 설계 및 제작)

  • Jung, Hyoung Jin;Park, Ji Woong;Jin, Hyoung Seok;Lim, Jae Hwan;Park, Se Jun;Kang, Min Woo;Kang, Hyun Chul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.9
    • /
    • pp.685-697
    • /
    • 2017
  • In this paper, it is presented the result of design and fabrication for C-band solid state high power amplifier unit and components using in search radar. The solid state power amplifier(SSPA) assembly was fabricated using GaN(Gallium Nitride), which is semiconductor device, and the transmit signal output power of the solid state high power amplifier unit is generated by combining the transmit signal power of the solid state power amplifier configured in parallel through a design and fabricated waveguide type transmit signal combine assembler. Designed solid state high power amplifier unit demonstrated C-band 500 MHz bandwidth, maximum 10.5% duty cycle, transmit pulse width from $0.0{\mu}s{\sim}000{\mu}s$, and transmit signal power is 44.98 kW(76.53 dBm).