• 제목/요약/키워드: S-Adenosyl-L-methionine

검색결과 43건 처리시간 0.022초

효모로부터 S-Adenosyl-L-Methionine의 실험실 규모 생산 (Laboratory Scale Preparation of S-Adenosyl-L-Methionine from Yeast)

  • 이종남;류양욱;최명언
    • 한국미생물·생명공학회지
    • /
    • 제19권6호
    • /
    • pp.588-591
    • /
    • 1991
  • S-adenosyl-L-methionine(SAM)은 생체 메칠화 반응에 긴요한 기질이다. 이 논문은 효모 발효에 의한 SAM의 실험실 규모 생산의 최적조건을 다시 검토한 것이다. 발효 배지는 메치오닌을 첨가했으며 배양조건들을 재조절하였다. 분리과정은 추출, 앙금 및 크로마토그래피를 포함한 다섯단계로 이루어졌다. 이 향상된 과정은 원래 방법보다 비교적 높은 생산 수득률로 생활성 있는 SAM을 4일 이내에 제공해준다.

  • PDF

Proteomes Induced by S-Adenosyl-L-Methionine in Streptomyces coelicolor A3(2)

  • Kim Kwang-Pyo;Shin Choon-Shik;Lee Soo-Jae;Kim Ji-Hye;Young Jung-Mo;Lee Yu-Kyung;Ahn Joong-Hoon;Suh Joo-Won;Lim Yoong-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권5호
    • /
    • pp.799-803
    • /
    • 2006
  • It was reported that an accumulation of Sadenosyl-L-methionine increases production of actinorhodin in Streptomyces lividans and induces antibiotic biosynthetic genes. We also obtained the same result in Streptomyces coelicolor A3(2). Therefore, in order to identify proteins changed by the addition of S-adenosyl-L-methionine in S. coelicolor A3(2), LC/MS/MS analyses were carried out. Thirteen proteins that were not observed in the control were found.

An Endogenous Proteinacious Inhibitor for S-Adenosyl-L-methionine-dependent Transmethylation Reactions; Identification of S-Adenosylhomocysteine as an Integral Part

  • Seo, Dong-Wan;Han, Jeung-Whan;Hong, Sung-Youl;Paik , Woon-Ki;Lee, Hyang-Woo
    • Archives of Pharmacal Research
    • /
    • 제22권3호
    • /
    • pp.237-242
    • /
    • 1999
  • A proteinacious inhibitor with a molecular weight of 1,600 Da which inhibits S-adenosyl-L-methionine-dependent transmethylation reactions was purified from porcine liver to homogeneity by procedures including boiling, Sephadex G-25 column chromatography and repeated HPLC. Employing both Nuclear Magnetic Resonance (NMR) and Fast Atom Bombardment-Mass (FAB-Mass) spectroscopy, S-adenosylhomocysteine was conclusively identified as an integral part of the inhibitor. The purified S-adenosylhomocysteine was competitive with S-adenosyl-L-methionine with Ki value of $6.3{\times}10^{-6}$ M towards protein methylase II.

  • PDF

췌조직과 성장 발육에 따른 흰쥐 조직내 S-Adenosylmethionine Synthetase 활성도 및 S-Adenosyl-L-methionine의 분포 (Distribution of S-Adenosylmethionine Synthetase in the Pancreatic Tissues of Various Animals and Changes of S-Adenosylmethionine Synthetase Activities and S-Adenosylmethionine in the Developing Rat Organs)

  • 박승희;유태무;홍성렬;이향우
    • 약학회지
    • /
    • 제38권4호
    • /
    • pp.430-439
    • /
    • 1994
  • S-Adenosyl-L-methionine synthetase (ATP: methionine S-Adenosyltransferase, EC 2.5.1.6; AdoMet synthetase) catalyzes the biosynthesis of S-Adenosyl-L-methionine(AdoMet) from methionine in the presence of ATP. To elucidate the role of transmethylation reaction in the pancreatic tissues, we examined AdoMet synthetase and isozyme activities, and AdoMet contents in the various tissues. The activities of AdoMet synthetase marked the highest in the kidney, and the lowest in the testis among the various tissues of rat. Considerable amounts of AdoMet synthetase activities were detected in the pancreatic tissues of various animals except for those of frog. The level of ${\alpha}$ and ${\gamma}$ isozyme activities were present in the pancreatic tissues of various animals, while ${\beta}$ isozyme activities were detected as trace. AdoMet synthetase activities of rat brain, liver, testis were decreased with growth. In the rat pancreatic tissues, AdoMet synthetase activities were increased during 16 days after birth and then decreased between 16 and 47 days of age. Levels of AdoMet contents of rat brain and testis were decreased with growth. However, AdoMet contents of rat pancreas were decreased until 26 days of age, and then increased thereafter. AdoMet synthetase isozyme patterns did not vary with growth in the pancreas and testis. But, in the liver, ${\beta}$ form is strikingly increased with growth.

  • PDF

Evaluation of S-Adenosyl-L-Methionine Production by Bifidobacterium bifidum BGN4

  • Kim, Ji-Youn;Suh, Joo-Won;Ji, Geun-Eog
    • Food Science and Biotechnology
    • /
    • 제17권1호
    • /
    • pp.184-187
    • /
    • 2008
  • S-Adenosyl-L-methionine (SAM) is an important metabolic intermediate in living organisms and participates in many reactions as a methyl group donor. SAM has been used as a dietary supplement and is proposed to have beneficial effects on the liver and brain. The aim of this study was to find lactic acid bacteria with high SAM-producing ability to be used as SAM enhancing probiotics. We used high performance liquid chromatography (HPLC) to quantify the amount of SAM produced, and found that Bifidobacterium bifidum BGN4 produced a significantly higher amount of SAM than other Bifidobacterium or Lactobacillus strains. The effect of various carbon and nitrogen sources on SAM production was examined. This study confirmed that Bifidobacterium may be utilized as a source of SAM in the functional food industry.

신경세포의 Myelination에 있어서 Myelin Basic Protein의 Methyl화 현상에 관한 연구 (Study on the Effects of Methylation of Myelin Basic Protein in Myelination of Nerve Cells)

  • 이향우;전재광
    • 약학회지
    • /
    • 제31권5호
    • /
    • pp.266-272
    • /
    • 1987
  • It is reasonably well known that there is a relationship between myelin formation and methylation of myelin basic protein in nerve cells. One of the suggestions is that arginine methylation of myelin basic protein could be of aid in the conjugation of myelin protein with the nonpolar lipid to form myelin. Abnormality in methylation of myclin basic protein might induce the neurological diseases in experimental animals as well as in human being. In the biological system, the methylation reaction is catalyzed by protein methaylse I using S-adenosyl-L-methionine as methyl donor. In this study, we examined the changes of S-adenosyl-L-methionine concentration and protein methylase I activity in developing rat brain tissues. The results are sumraerized as followings: (1) In brain tissues of fetus rat, the concentration of S-adenosyl-L-methionine was gradually decreased until to birth. However, the concentration in brain tissues of infant rat was suddenly increased at 7th day(just before myelination occur) birth. (2) Protein methylase I activity was decreased until to birth in brain of fetus rat and increased temporally just after birth, However, the enzyme activity showed no changes around 7th day after birth.

  • PDF

S-Adenosyl-L-Methionine Analogues to Enhance the Production of Actinorhodin

  • Chong You-Hoon;Young Jung-Mo;Kim Jin-Young;Lee Yu-Kyung;Park Kwang-Su;Cho Jun-Ho;Kwon Hyung-Jin;Suh Joo-WOn;Lim Yoong-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권7호
    • /
    • pp.1154-1157
    • /
    • 2006
  • It is known that overexpression of S-adenosyl-L-methionine (SAM) synthetase or exogenous addition of SAM enhances the production of actinorhodin, one of pigmented antibiotics found from Streptomyces coelicolor. In order to discover a novel compound as a signal molecule to produce actinorhodin instead of SAM, several compounds were synthesized based on the relationships between structures of the SAM analogues and their actinorhodin productivities. Of these, a few compounds showed better productivities of actinorhodin than SAM.

S-Adenosyl-L-methionine (SAM) Production by Lactic Acid Bacteria Strains Isolated from Different Fermented Kimchi Products

  • Lee, Myung-Ki;Lee, Jong-Kyung;Son, Jeong-A;Kang, Mun-Hui;Koo, Kyung-Hyung;Suh, Joo-Won
    • Food Science and Biotechnology
    • /
    • 제17권4호
    • /
    • pp.857-860
    • /
    • 2008
  • S-Adenosyl-L-methionine (SAM) is a bioactive material used in the treatment of depression, osteoarthritis, and liver disease. To obtain lactic acid bacteria (LAB) producing high concentrations of SAM, LAB were isolated from commercial kimchi and from prepared kimchi products that contained shrimp jeotgal (fermented salty seafood) or sand lance jeotgal or that were fermented at 5 or $10^{\circ}C$, respectively, when pH was 4.2 to 4.8 and titratable acidity 0.6 to 0.9. Among the 179 LAB strains isolated from the fermented kimchi products, the genus Leuconostoc produced the highest intracellular level of SAM (1.58 mM) and Lactobacillus produced the second highest level (up to 1.47 mM) in the strain culture. This is the first study to quantify SAM in LAB isolated from fermented kimchi prepared by a general kimchi recipe. Ultimately, the selected strains (Leuconostoc mesentroides subsp. mesenteroides/dextranicum KSK417, L. mesentroides subsp. mesenteroides/dextranicum KJM401, and Lactobacillus bifermentans QMW327) could be useful as starters to manufacture fermented foods containing high levels of SAM.