• 제목/요약/키워드: S-ACC

검색결과 340건 처리시간 0.022초

모바일 단말기를 위한 만화 영상 자동 변환 (Automatic Conversion of Large Comic Pictures on Mobile Devices)

  • 한은정;전성국;정기철
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2005년도 가을 학술발표논문집 Vol.32 No.2 (2)
    • /
    • pp.640-642
    • /
    • 2005
  • 모바일 기술의 발전으로 인쇄 매체가 아닌 온라인 매체로 만화 콘텐츠를 제공받는 수요층이 늘어나고 있고, 모바일 단말기의 작은 화면 위에 기존 오프라인 만화를 브라우징하기 위한 새로운 기술에 대한 연구가 많이 진행되고 있다. 본 논문에서는 큰 만화 콘텐츠를 영상의 의미 정보(배경이 아닌 모든 부분: 사람, 중요한 오브젝트, 문자)의 손실을 최소화하여, 기존의 오프라인 만화 콘텐츠를 모바일 단말기에 맞게 자동 변환 시스템 (Automatic Comics Conversion System: ACCS)을 제안한다. ACCS는 기존 만화 콘텐츠 영상의 각 페이지를 프레임 단위로 자르고 잘라진 프레임을 분할, 확대, 축소 등을 통해 모바일 단말기 화면 크기에 맞게 자동으로 변환한다.

  • PDF

A survey on the application of oxide nanoparticles for improving concrete processing

  • Khayati, Gholam Reza;Ghasabe, Hojat Mirzaei;Karfarma, Masoud
    • Advances in concrete construction
    • /
    • 제3권2호
    • /
    • pp.145-159
    • /
    • 2015
  • The evolution of nanotechnology provides materials with advance properties. It's a fast growing area of research to introduce the oxide nanoparticles into the cement pastes to improve their performance. The purpose of this paper is to review the effects of oxide nanoparticles (such as $SiO_2$, $TiO_2$, $Fe_2O_3$, $ZnO_2$, $Cr_2O_3$ and $Al_2O_3$) on both of hardened concrete properties (i.e., compressive strength, split tensile strength and flexural strength, water permeability, Abrasion resistance and pore structure of concrete) and fresh concrete properties (i.e., workability and setting time). Graphical representations of all these parameters were presented to facilitate the comparison of the effect of oxide nanoparticles on concrete processing. The paper also introduces some discussion about future work in this direction by identifying some open research area.

Isolation and Characterization of a New Fluorescent Pseudomonas Strain that Produces Both Phenazine 1-Carboxylic Acid and Pyoluteorin

  • HU, HONG-BO;XU, YU-QUAN;FENG CHEN;XUE HONG ZHANG;HUR, BYUNG-KI
    • Journal of Microbiology and Biotechnology
    • /
    • 제15권1호
    • /
    • pp.86-90
    • /
    • 2005
  • Strain M-18 was isolated from the rhizosphere soil of sweet melon, using 1-aminocyclopropane-1-carboxylate (ACC) as a sole nitrogen source. Its phenotypic characteristics, metabolic tests, and 16S rDNA sequence were analyzed. The antibiotics secreted by strain M-18 were determined to be phenazine 1-carboxylic acid and pyoluteorin. These data showed that strain M-18 was a new fluorescent Pseudomonas strain that produced both phenazine 1-carboxylic acid and pyoluteorin, some features being similar to Pseudomonas aeruginosa and Pseudomonas fluorescens. Therefore, the strain M-18 appears to be the first pseudomonad described to date that is capable of producing both phenazine 1-carboxylic acid and pyoluteorin.

Effect of hybrid fibers on tension stiffening of reinforced geopolymer concrete

  • Ganesan, N.;Sahana, R.;Indira, P.V.
    • Advances in concrete construction
    • /
    • 제5권1호
    • /
    • pp.75-86
    • /
    • 2017
  • An experimental work was carried out to study the effect of hybrid fiber on the tension stiffening and cracking characteristics of geopolymer concrete (GPC). A total of 24 concentrically reinforced concrete specimens were cast and tested under uniaxial tension. The grade of concrete considered was M40. The variables mainly consist of the volume fraction of crimped steel fibers (0.5 and 1.0%) and basalt fibers (0.1, 0.2 and 0.3%). The load deformation response was recorded using LVDT's. At all the stages of loading after the first cracking, crack width and crack spacing were measured. The addition of fibers in hybrid form significantly improved the tension stiffening effect. In this study, the combination of 0.5% steel fiber and 0.2% basalt fiber gave a better comparison than the other combinations.

Study on behavior of RCC beams with externally bonded FRP members in flexure

  • Sumathi, A.;Arun Vignesh, S.
    • Advances in concrete construction
    • /
    • 제5권6호
    • /
    • pp.625-638
    • /
    • 2017
  • The flexural behavior of Fiber reinforced polymer (FRP) sheets has gained much research interest in the flexural strengthening of reinforced concrete beams. The study on flexure includes various parameters like increase in strength of the member due to the externally bonded (EB) Fiber reinforced polymer, crack patterns, debonding of the fiber from the structure, scaling, convenience of using the fibers, cost effectiveness, etc. The present work aims to study experimentally about the reasons behind the failure due to flexure of an externally bonded FRP concrete beam. In the design of FRP-reinforced concrete structures, deflection control is as critical as much as flexural strength. A numerical model is created using Finite element (FEM) software and the results are compared with that of the experiment.

Agglomerated SiO2 nanoparticles reinforced-concrete foundations based on higher order shear deformation theory: Vibration analysis

  • Alijani, Meysam;Bidgoli, Mahmood Rabani
    • Advances in concrete construction
    • /
    • 제6권6호
    • /
    • pp.585-610
    • /
    • 2018
  • In this study, vibration analysis of a concrete foundation-reinforced by $SiO_2$ nanoparticles resting on soil bed is investigated. The soil medium is simulated with spring constants. Furthermore, the Mori-Tanaka low is used for obtaining the material properties of nano-composite structure and considering agglomeration effects. Using third order shear deformation theory or Reddy theory, the total potential energy of system is calculated and by means of the Hamilton's principle, the coupled motion equations are obtained. Also, based an analytical method, the frequency of system is calculated. The effects of volume percent and agglomeration of $SiO_2$ nanoparticles, soil medium and geometrical parameters of structure are shown on the frequency of system. Results show that with increasing the volume percent of $SiO_2$ nanoparticles, the frequency of structure is increased.

Design of small impact test device for concrete panels subject to high speed collision

  • Kim, Sanghee;Jeong, Seung Yong;Kang, Thomas H.K.
    • Advances in concrete construction
    • /
    • 제7권1호
    • /
    • pp.23-30
    • /
    • 2019
  • Five key items were used to create an economical and physically small impact test device for concrete panels subject to high speed collision: an air-compressive system, carbon steel pipe, solenoid valve, carrier and carrier-blocking, and velocity measurement device. The impact test device developed can launch a 20 mm steel spherical projectile at over 200 m/s with measured impact and/or residual velocity. Purpose for development was to conduct preliminary materials tests, prior to large-scale collision experiments. In this paper, the design process of the small impact test device was discussed in detail.

Dynamic analysis of concrete column reinforced with Sio2 nanoparticles subjected to blast load

  • Azmi, Masoud;Kolahchi, Reza;Bidgoli, Mahmood Rabani
    • Advances in concrete construction
    • /
    • 제7권1호
    • /
    • pp.51-63
    • /
    • 2019
  • The project focuses on the dynamic analysis of concrete beams reinforced with silica-nanoparticles under blast loading. The structure is located at two boundary conditions. The equivalent composite properties are determined using Mori-Tanak model. The structure is simulated with sinusoidal shear deformation theory. Employing nonlinear strains-displacements, stress-strain, the energy equations of beam were obtained and using Hamilton's principal, the governing equations were derived. Using differential quadrature methods (DQM) and Newmark method, the dynamic deflection of the structure is obtained. The influences of volume percent and agglomeration of silica nanoparticles, geometrical parameters of beam, boundary condition and blast load on the dynamic deflection were investigated. Results showed that with increasing volume percent of silica nanoparticles, the dynamic deflection decreases.

An analytical solution for equations and the dynamical behavior of the orthotropic elastic material

  • Ramady, Ahmed;Atia, H.A.;Mahmoud, S.R.
    • Advances in concrete construction
    • /
    • 제11권4호
    • /
    • pp.315-321
    • /
    • 2021
  • In this article, an analytical solution of the dynamical behavior in an orthotropic non-homogeneity elastic material using for elastodynamics equations is investigated. The effects of the magnetic field, the initial stress, and the non-homogeneity on the radial displacement and the corresponding stresses in an orthotropic material are investigated. The analytical solution for the elastodynamic equations has solved regarding displacements. The variation of the stresses, the displacement, and the perturbation magnetic field have shown graphically. Comparisons are made with the previous results in the absence of the magnetic field, the initial stress, and the non-homogeneity. The present study has engineering applications in the fields of geophysical physics, structural elements, plasma physics, and the corresponding measurement techniques of magneto-elasticity.

Shear strength of steel fiber reinforced concrete deep beams without stirrups

  • Birincioglu, Mustafa I.;Keskin, Riza S.O.;Arslan, Guray
    • Advances in concrete construction
    • /
    • 제13권1호
    • /
    • pp.1-10
    • /
    • 2022
  • Concrete is a brittle material and weak in tension. Traditionally, web reinforcement in the form of vertical stirrups is used in reinforced concrete (RC) beams to take care of principal stresses that may cause failure when they are subjected to shear stresses. In recent decades, the potential of various types of fibers for improving post-cracking behavior of RC beams and replacing stirrups completely or partially have been studied. It has been shown that the use of steel fibers randomly dispersed and oriented in concrete has a significant potential for enhancing mechanical properties of RC beams. However, the studies on deep steel fiber reinforced concrete (SFRC) beams are limited when compared to those focusing on slender beams. An experimental program consisting of three RC and nine SFRC deep beams without stirrups were conducted in this study. Besides, various models developed for predicting the ultimate shear strength and diagonal cracking strength of SFRC deep beams without stirrups were applied to experimental data obtained from the literature and this study.