• Title/Summary/Keyword: S-2 glass

Search Result 1,672, Processing Time 0.022 seconds

Export Prediction Using Separated Learning Method and Recommendation of Potential Export Countries (분리학습 모델을 이용한 수출액 예측 및 수출 유망국가 추천)

  • Jang, Yeongjin;Won, Jongkwan;Lee, Chaerok
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.1
    • /
    • pp.69-88
    • /
    • 2022
  • One of the characteristics of South Korea's economic structure is that it is highly dependent on exports. Thus, many businesses are closely related to the global economy and diplomatic situation. In addition, small and medium-sized enterprises(SMEs) specialized in exporting are struggling due to the spread of COVID-19. Therefore, this study aimed to develop a model to forecast exports for next year to support SMEs' export strategy and decision making. Also, this study proposed a strategy to recommend promising export countries of each item based on the forecasting model. We analyzed important variables used in previous studies such as country-specific, item-specific, and macro-economic variables and collected those variables to train our prediction model. Next, through the exploratory data analysis(EDA) it was found that exports, which is a target variable, have a highly skewed distribution. To deal with this issue and improve predictive performance, we suggest a separated learning method. In a separated learning method, the whole dataset is divided into homogeneous subgroups and a prediction algorithm is applied to each group. Thus, characteristics of each group can be more precisely trained using different input variables and algorithms. In this study, we divided the dataset into five subgroups based on the exports to decrease skewness of the target variable. After the separation, we found that each group has different characteristics in countries and goods. For example, In Group 1, most of the exporting countries are developing countries and the majority of exporting goods are low value products such as glass and prints. On the other hand, major exporting countries of South Korea such as China, USA, and Vietnam are included in Group 4 and Group 5 and most exporting goods in these groups are high value products. Then we used LightGBM(LGBM) and Exponential Moving Average(EMA) for prediction. Considering the characteristics of each group, models were built using LGBM for Group 1 to 4 and EMA for Group 5. To evaluate the performance of the model, we compare different model structures and algorithms. As a result, it was found that the separated learning model had best performance compared to other models. After the model was built, we also provided variable importance of each group using SHAP-value to add explainability of our model. Based on the prediction model, we proposed a second-stage recommendation strategy for potential export countries. In the first phase, BCG matrix was used to find Star and Question Mark markets that are expected to grow rapidly. In the second phase, we calculated scores for each country and recommendations were made according to ranking. Using this recommendation framework, potential export countries were selected and information about those countries for each item was presented. There are several implications of this study. First of all, most of the preceding studies have conducted research on the specific situation or country. However, this study use various variables and develops a machine learning model for a wide range of countries and items. Second, as to our knowledge, it is the first attempt to adopt a separated learning method for exports prediction. By separating the dataset into 5 homogeneous subgroups, we could enhance the predictive performance of the model. Also, more detailed explanation of models by group is provided using SHAP values. Lastly, this study has several practical implications. There are some platforms which serve trade information including KOTRA, but most of them are based on past data. Therefore, it is not easy for companies to predict future trends. By utilizing the model and recommendation strategy in this research, trade related services in each platform can be improved so that companies including SMEs can fully utilize the service when making strategies and decisions for exports.

Evaluation of the Usefulness of Exactrac in Image-guided Radiation Therapy for Head and Neck Cancer (두경부암의 영상유도방사선치료에서 ExacTrac의 유용성 평가)

  • Baek, Min Gyu;Kim, Min Woo;Ha, Se Min;Chae, Jong Pyo;Jo, Guang Sub;Lee, Sang Bong
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.32
    • /
    • pp.7-15
    • /
    • 2020
  • Purpose: In modern radiotherapy technology, several methods of image guided radiation therapy (IGRT) are used to deliver accurate doses to tumor target locations and normal organs, including CBCT (Cone Beam Computed Tomography) and other devices, ExacTrac System, other than CBCT equipped with linear accelerators. In previous studies comparing the two systems, positional errors were analysed rearwards using Offline-view or evaluated only with a Yaw rotation with the X, Y, and Z axes. In this study, when using CBCT and ExacTrac to perform 6 Degree of the Freedom(DoF) Online IGRT in a treatment center with two equipment, the difference between the set-up calibration values seen in each system, the time taken for patient set-up, and the radiation usefulness of the imaging device is evaluated. Materials and Methods: In order to evaluate the difference between mobile calibrations and exposure radiation dose, the glass dosimetry and Rando Phantom were used for 11 cancer patients with head circumference from March to October 2017 in order to assess the difference between mobile calibrations and the time taken from Set-up to shortly before IGRT. CBCT and ExacTrac System were used for IGRT of all patients. An average of 10 CBCT and ExacTrac images were obtained per patient during the total treatment period, and the difference in 6D Online Automation values between the two systems was calculated within the ROI setting. In this case, the area of interest designation in the image obtained from CBCT was fixed to the same anatomical structure as the image obtained through ExacTrac. The difference in positional values for the six axes (SI, AP, LR; Rotation group: Pitch, Roll, Rtn) between the two systems, the total time taken from patient set-up to just before IGRT, and exposure dose were measured and compared respectively with the RandoPhantom. Results: the set-up error in the phantom and patient was less than 1mm in the translation group and less than 1.5° in the rotation group, and the RMS values of all axes except the Rtn value were less than 1mm and 1°. The time taken to correct the set-up error in each system was an average of 256±47.6sec for IGRT using CBCT and 84±3.5sec for ExacTrac, respectively. Radiation exposure dose by IGRT per treatment was measured at 37 times higher than ExacTrac in CBCT and ExacTrac at 2.468mGy and 0.066mGy at Oral Mucosa among the 7 measurement locations in the head and neck area. Conclusion: Through 6D online automatic positioning between the CBCT and ExacTrac systems, the set-up error was found to be less than 1mm, 1.02°, including the patient's movement (random error), as well as the systematic error of the two systems. This error range is considered to be reasonable when considering that the PTV Margin is 3mm during the head and neck IMRT treatment in the present study. However, considering the changes in target and risk organs due to changes in patient weight during the treatment period, it is considered to be appropriately used in combination with CBCT.