• Title/Summary/Keyword: Rural water

Search Result 2,393, Processing Time 0.029 seconds

Rural Water Supply from the Irrigation Reservoir

  • 김대철;박성기
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.37 no.E
    • /
    • pp.47-54
    • /
    • 1995
  • Irrigation water has been mainly used for paddy rice. Irrigated paddy land tends to be recently converted to land for green house, farm house, and rural-industrial complex. Consequently, demand of water for crops, domestic & industrial, rural recreations, small-scaled hydropower, livestocks, and environment in the rural area, so called rural water, is rapidly increasing. In order to supply rural water, water in the existing irrigation reservoir could be enlarged by repairment of irrigation canal and reinforcement of irrigation reservoir, and be saved by the operation rule curve, utilization of dead water, and balanced storage management.

  • PDF

Analysis of spatial characteristics and irrigation facilities of rural water districts

  • Mikyoung Choi;Kwangya Lee;Bosung Koh;Sangyeon Yoo;Dongho Jo;Minchul La;Sangwoo Kim;Wonho Nam
    • Korean Journal of Agricultural Science
    • /
    • v.50 no.4
    • /
    • pp.903-916
    • /
    • 2023
  • This study aims to establish basic data for efficient management of rural water by analyzing regional irrigation facilities and benefitted areas in the statistical yearbook of land and water development for agriculture at the watershed level. For 511 domestic rural water use areas, water storage facilities (reservoirs, pumping & drainage stations, intake weirs, infiltration galleries, and tube wells) are spatially distributed, and the benefitted areas provided at the city/county level are divided by water use area to provide agricultural water supply facilities. The characteristics of rural water district areas such as benefitted area, were analyzed by basin. The average area of Korea's 511 rural water districts is 19,638 ha. The average benefitted area by rural water district is 1,270 ha, with the Geum River basin at 2,220 ha and the Yeongsan River basin at 1,868 ha, which is larger than the overall average. The Han River basin at 807 ha, the Nakdong River basin at 1,121 ha, and the Seomjing River basin at 938 ha are smaller than the overall average. The results of this basic analysis are expected to be used to set the direction of various supply and demand management projects that take into account the rational and scientific use and distribution of rural water and the characteristics of water use areas by presenting a quantitative definition of Korea's agricultural water districts.

A Status of Agricultural Water Quality and Improvable Countermeasure in Korea (우리나라 농업용수 수질오염 현황과 개선대책)

  • Baeg, Cheong-Oh;Kang, Sang-Gu;Lee, Kwang-Sik
    • Korean Journal of Environmental Agriculture
    • /
    • v.15 no.4
    • /
    • pp.506-519
    • /
    • 1996
  • The water quality in the rural areas is degrading due to a variety of causes such as the increase of the urban sewage and industrial wastes, the disposal of solid wastes, the growth of livestock waste, the growth of leisure facilities, the establishment of agricultural industry estates and etc. The water pollutants are scarce while the effluent is increasing from wide scattered sources. The technology specifically designed for the rural wastes water treatment plant needs to be implemented with improvement of agricultural water quality. 1. An integrated management measures against water pollution sources. The prevention of water pollution is the best measures in the environmental pollution. Hence, the most effective measures needs to be against the sources. Small-scale water treatment plants needs to be constructed in each village in the rural areas. As for the industrial effluent, the effluent discharge needs to be strictly monitored. Government subsidy for the establishment of treatment plant for livestock wastes is necessary. 2. The establishment of national-wide network for agricultural water quality. The network for agricultural water quality have been operated to conserve the agricultural water quality, and to develop management policies by the assessment of water pollution in the rural areas. The results of agricultural water quality network indicates that the water quality is degrading not only around urban areas but also in the distant rural areas, and the water quality at the pumping stations and weirs is worse than that of reservoirs. 3. The legal, systematic, and technical approaches for the agricultural water quality management. The actions currently implemented for the improvement of agricultural water quality involve temporary measures such as the improvement of irrigation facilities. These contingency measures are not effective in the long-term, and sometimes bring secondary pollution. Therefore, integrated measures covering the whole water environment such as the flow, quality, river morphology, aquatic ecosystem, and the surrounding environment, need be invented and implemented. Besides, the legal, systematic, and technical frameworks for the management are not fully established so far. The technology for the treatment of rural water pollution should be refined afterwards, and the research for the development of rural waste water treatment plant should be carried out.

  • PDF

Change in Impervious Area Rate by Rural Water Districts using EGIS Land Cover Maps (EGIS 토지피복지도를 이용한 농어촌용수구역 불투수면적률 변화)

  • Jang, Min-Won;Kim, Hakkwan
    • Journal of Korean Society of Rural Planning
    • /
    • v.28 no.4
    • /
    • pp.19-29
    • /
    • 2022
  • This study aimed to estimate the impervious area rate by rural water districts in 2009 and 2021 and analyze the changes. From the EGIS(Environmental Geographic Information Service) land cover maps, the impervious areas were defined as residential, commercial, industrial, culture·sports·recreational, traffic, public facilities, and greenhouses of land cover classes. For 496 rural water districts excluding the border area with North Korea, the nationwide impervious area rate increased from 5.96% in 2009 to 7.50% in 2021. The average of the top 50 rural water districts increased from 23.4% in 2009 to 27.1% in 2021. E ven for the bottom 50 rural water districts, the average impervious area rate rose from 1.12% in 2009 to 1.40% in 2021. Rural water districts with a high impervious area rate are mainly distributed in metro cities and industrial areas. The contraries are primarily found in Gangwon, Gyeongsang, and Jeolla regions covered with forests and farmlands. Notably, the impervious area rate changed more in the neighboring rural water districts than in large cities, and the rate kept increasing slightly even in rural areas with a low impervious area rate. The findings of this study will help prepare a reasonable alternative for managing the impermeable surface of rural areas for safe and sound rural water cycle.

Assessment of domestic water supply potential of agricultural reservoirs in rural area considering economic index (경제성 지표를 활용한 농업용저수지의 생활용수 공급가능성 평가)

  • Yoon, Kwang-Sik;Choi, Soo-Myung;Chai, Jong-Hun;Yoo, Seung-Hwan;Choi, Dong-Ho;Yoon, Suk-Gun;Lee, Chang-Hee;Jung, Kyung-Hun;Shin, Gil-Chai
    • Journal of Korean Society of Rural Planning
    • /
    • v.23 no.1
    • /
    • pp.85-96
    • /
    • 2017
  • Existing agricultural reservoirs are considered as alternative source for the water welfare of rural area. In this study, domestic water supply potential of 476 reservoirs, which has storage capacity more than one million cubic meter, out of 3,377 agricultural reservoirs managed by Korean Rural Community Corporation (KRC) were investigated. Among them water quality of 136 reservoirs met the criteria of domestic water source which show less than COD 3 ppm. Available amount for domestic water of reservoirs, which meet the water quality, for ten year return period of drought was analyzed with reservoir water balance model. The results showed that 116 reservoirs has potential for supplementary domestic water supply while satisfying irrigation water supply. Finally, economic analysis using Net Present Value (NPV), Benefit-Cost (B/C) ratio, Internal Rate of Return (IRR), and Profitability Index (PI) methods was also conducted. The analysis showed that 19 reservoirs satisfied economic feasibility when water is provided from reservoir outlet but only 9 reservoirs meet the economic feasibility if water delivered from a reservoir to treatment plant by newly built conveyance canal. In order to supply the domestic water through the agricultural reservoirs managed by KRC, it is necessary to flexibly interpret and operate the 'Rearrangement of Agricultural and Fishing village Act'. Also, it is reasonable to participate in the water service business when there is a supply request from other Ministries. In addition, the KRC requires further effort to change the crop system for saving water and improve efficiency of irrigation systems.

A Study on the Rational Planning of Water Supply and Sewage System for Rural Village Development Projects (농촌마을종합개발사업에서 상하수도시설의 합리적 계획방향에 관한 기초적 연구)

  • Kim, Hwan-Yong
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.8 no.2
    • /
    • pp.62-71
    • /
    • 2006
  • This study on the rational planning of water supply and sewage system for rural village development projects. Present, when establishment and standard about maintenance of water supply and sewage system were not presented in rural village synthesis development projects, it is real condition that service industry is depending on presenting simple plan in basis planning phase and business enforcement step. This study wishes to present basic data so that can be planned more rationally and enforce and contribute in rural village synthesis development projects water supply and sewage system that is enforced as part of rural village synthesis development projects.

  • PDF

Estimation of Regional Future Agricultural Available Groundwater Supply in Jeju Island Using Water Balance Method (물수지 분석법을 이용한 제주도 권역별 미래 농업용 지하수 공급 가능량 추정)

  • Song, Sung-Ho;Lee, Gyu-Sang;Myoung, Woo-Ho;An, Jung-Gi;Baek, Jin-Hee;Jung, Cha-Youn
    • Journal of Soil and Groundwater Environment
    • /
    • v.24 no.2
    • /
    • pp.23-37
    • /
    • 2019
  • To evaluate the available groundwater supply to the agricultural water demand in the future with the climate change scenarios for 40 sub-regions in Jeju Island, groundwater recharge and the available groundwater supply were estimated using water balance analysis method. Groundwater recharge was calculated by subtracting the actual evapotranspiration and direct runoff from the total amount of water resources and available groundwater supply was set at 43.6% from the ratio of the sustainable groundwater capacity to the groundwater recharge. According to the RCP 4.5 scenario, the available groundwater supply to the agricultural water demand is estimated to be insufficient in 2020 and 2025, especially in the western and eastern regions of the island. However, such a water shortage problem is alleviated in 2030. When applying the RCP 8.5 scenario, available groundwater supply can't meet the water demand over the entire decade.

Economic analysis of irrigation facilities for securing water for field crops

  • Hyung Jin Shin;Jae Young Lee;Jae Nam Lee;Han Na Lee;Sang Hyeon Park;Bum Soo Shin;Sang Sun Cha;Se Myung Kwon;Jung Il Seo;Chan Gi Park
    • Korean Journal of Agricultural Science
    • /
    • v.50 no.4
    • /
    • pp.785-798
    • /
    • 2023
  • Considering irrigation facilities are currently insufficient and drought vulnerability due to climate change is high, efficient measures are required to secure water supply for field crops. This study, therefore, calculated the water shortage to secure water for representative field crops. An economic analysis was further conducted by comparing the production income to the input cost for each method. Here, five distinct regions were selected to represent each crop-Cheongyang-gun for chili peppers, Yesan-gun for apples, Dangjin-si for cabbages, Seosan-si for garlic, and Goesan for beans. The regions with insufficient water supply were estimated by calculating the water requirements and the supplied water from public groundwater wells for each area. A comprehensive set of four scenarios was presented as a strategy to ensure water security and manage irrigation facilities. These scenarios comprised the maintenance of existing groundwater wells, the construction of new water storage tanks, the installation of additional groundwater wells, and the utilization of surface water. B/C (benefit/cost) analysis was conducted for each scenario. As a result, the construction of water storage tanks was selected as a facility and water management plan in Cheongyang-gun, Dangjin-si, and Seosan-si. The analysis additionally indicated the economic viability of installing surface water utilization facilities in Yesan-gun and developing water storage tanks and groundwater (aquifer) wells in Goesan-gun. The results of this study are considered to serve as foundation data that may be utilized in the selection of water management plans for drought-prone areas in the future.

Estimation of Regional Future Agricultural Water Demand in Jeju Island Considering Land Use Change (토지이용 변화를 고려한 제주도 권역별 미래 농업용수 수요량 추정)

  • Song, Sung-Ho;Myoung, Woo-Ho;An, Jung-Gi;Jang, Jung-Seok;Baek, Jin-Hee;Jung, Cha-Youn
    • Journal of Soil and Groundwater Environment
    • /
    • v.23 no.1
    • /
    • pp.92-105
    • /
    • 2018
  • In this study, the projected land use area in 2030 for major crop production was estimated in Jeju Island using land cover map, and corresponding agricultural water demand for 40 sub-regions was quantitatively assessed using the future climate change scenario (RCP 4.5). Estimated basic unit of water demand in 2030 was the highest in the western region, and the lowest in the eastern region. Monthly maximum agricultural water demand analysis revealed that water demand in August of 2030 substantially increased, suggesting the climate of Jeju Island is changing to a subtropical climate in 2030. Agricultural water demand for sub-region in 2030 was calculated by multiplying the target area of the water supply excluding the area not in use in winter season by the basic unit of water demand, and the maximum and minimum values were estimated to be $306,626m^3/day$ at Seogwipo downtown region and $77,967m^3/day$ at Hallim region, respectively. Consequently, total agricultural water demand in Jeju Island in 2030 was estimated to be $1,848,010m^3/day$.

A Economic Feasibility Study on Environmental Ecology Flow Supply Plan using Agricultural Reservoir - Focused on Dongbok River - (농업용저수지를 이용한 환경생태유량 확보방안 경제성 비교 연구 - 동복천을 중심으로 -)

  • Park, Jin-hyeon;Ko, Jae han;Sung, Mu-hong;Jung, Hyoung-mo;Park, Tae-sun;Kwak, Yeong Cheol;Choi, Woo-young;Boem, Jina;Jeung, Minhyuk;Yoo, Seung-hwan;Yoon, Kwang-sik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.5
    • /
    • pp.33-47
    • /
    • 2019
  • The environmental ecological flow (EEF) of stream or river will be designated according to the enforcement of the Water Environment Preservation Act. Previous researches by Ministry of Environment have proposed agricultural reservoirs as alternative resources to secure river flow where multi-purpose dam does not exist. However, agricultural reservoirs are constructed for the supply of agricultural water, and in fact, there is not a sufficient amount of water to be supplied to rivers as EEF. Therefore, this study examines the economic feasibility of securing EEF through the remodeling or construction of agricultural reservoirs. We investigated water balance of reservoir through simulation of three types of water supply demands such as agricultural water, agricultural water and river maintenance flow, and agricultural water and environmental ecology flow. The economics analysis was conducted on water supply demands and corresponding remodeling or construction of reservoirs. As a result, it was found that the method of securing through heightening existing reservoir enhancement is economically feasible. However, it was not possible to secure all the amount of the EEF due to the size limitation of existing reservoirs or constrain of the watershed for newly built reservoir. Therefore, in order to secure all of the EEF, the utilization of other alternatives as well as agricultural reservoirs should be considered. This study demonstrated the method of economical feasibility study of securing river maintenace flow and EEF using agricultural reservoirs and other considerations.