• Title/Summary/Keyword: Rupture deformation

Search Result 112, Processing Time 0.026 seconds

Rheological Properties of Bundled Leaf Vegetables Held and Picked-up by Machine (줄기 엽채소의 기계적 파지시 리올로지 특성)

  • Jun, Hyeon-Jong;Kim, Sang-Hun
    • Journal of Biosystems Engineering
    • /
    • v.32 no.6
    • /
    • pp.395-402
    • /
    • 2007
  • This study was carried out as basic researches to develop the leaf vegetable harvester. This study was conducted to investigate physical and rheological properties of bundled leaf vegetables with stem (Chinese leek, Crown daisy and Chamnamul) as test materials held and picked-up by a machine. Stress-strain behavior, stress relaxation, and strain recovery for the bundled materials were analyzed using simple Maxwell model. Physical and rheological properties of the materials were investigated by measuring rupture load, deformation and stress experimentally. Also, strain recovery time when unloading was measured using super high speed camera. Recorded recovery time for stress-strain behavior was0.026 s for Chinese leek with liner strain recovery, 0.046 s for Crown daisy and 0.05 s for Chamnamul with non-linear strain recovery. Furthermore, the strain recovery time for permanent deformation was 0.026 s, 0.046 s, and 0.05 s for Chinese Leek, Crown daisy and Chamnamul, respectively. Finally, strain recovery time and strain recovery ratio for the test materials were 0.17 s, 60.4% in Chinese leek, 0.12 s, 55.3% in Crown daisy, 0.15 s, 58.7% in Chamnamul. Here strain recovery time means that how fast the test materials are recovered from initial deformation and strain recovery ratio means how much the test materials are recovered from initial deformation. The above results show that the test materials can be held enough and moved by the belts.

A Study on the Creep Deformation Characteristic of AZ31 Mg Alloy at High Temperature (AZ3l 마그네슘 합금의 고온 크리이프 변형특성에 관한 연구)

  • An Jungo;Kang Daemi;Koo Yang;Sim Sungbo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.3
    • /
    • pp.186-192
    • /
    • 2005
  • The apparent activation energy Qc, the applied stress exponent n, and rupture life have been determined from creep test results of AZ31 Mg alloy over the temperature range of 200$^{\circ}C$ to 300$^{\circ}C$ and the stress range of 23.42 MPa to 93.59 MPa, respectively, in order to investigate the creep behavior. Constant load creep tests were carried out in the equipment including automatic temperature controller with data acquisition computer. At the temperature of $200^{\circ}C{\sim}220^{\circ}C$ and under the stress level of 62.43~93.59 MPa, and at around the temperature of $280^{\circ}C{\sim}300^{\circ}C$ and under the stress level of 23.42~39.00 MPa, the creep behavior obeyed a simple power-law relating steady state creep rate to applied stress and the activation energy fur the creep deformation was nearly equal to that of the self diffusion of Mg alloy including aluminum From the above results, at the temperature of $200^{\circ}C{\sim}220^{\circ}C$ the creep deformation for AZ31 Mg alloy seemed to be controlled by dislocation climb but controlled by dislocation glide at $280^{\circ}C{\sim}300^{\circ}C$ .And relationship beween rupture time and stress at around the temperature of $200^{\circ}C{\sim}220^{\circ}C$ and under the stress level of 62.43~93.59 MPa, and again at around the temperature of $280^{\circ}C{\sim}300^{\circ}C$ and under the stress level of 23.42~39.00 MPa, respectively, appeard as fullow; log$\sigma$=-0.18(T+460)(logtr+21)+5.92, log$\sigma$ = -0.25(T+460)(logtr+21)+8.02 Also relationship beween rupture time and steady state creep rate appears as follow; ln$\dot$ =-0.881ntr-2.45

Performance evaluation of soil-embedded plastic optical fiber sensors for geotechnical monitoring

  • Zhang, Cheng-Cheng;Zhu, Hong-Hu;Shi, Bin;She, Jun-Kuan;Zhang, Dan
    • Smart Structures and Systems
    • /
    • v.17 no.2
    • /
    • pp.297-311
    • /
    • 2016
  • Based on the distributed fiber optic sensing (DFOS) technique, plastic optical fibers (POFs) are attractive candidates to measure deformations of geotechnical structures because they can withstand large strains before rupture. Understanding the mechanical interaction between an embedded POF and the surrounding soil or rock is a necessary step towards establishing an effective POF-based sensing system for geotechnical monitoring. This paper describes a first attempt to evaluate the feasibility of POF-based soil deformation monitoring considering the POF-soil interfacial properties. A series of pullout tests were performed under various confining pressures (CPs) on a jacketed polymethyl methacrylate (PMMA) POF embedded in soil specimens. The test results were interpreted using a fiber-soil interaction model, and were compared with previous test data of silica optical fibers (SOFs). The results showed that the range of CP in this study did not induce plastic deformation of the POF; therefore, the POF-soil and the SOF-soil interfaces had similar behavior. CP was found to play an important role in controlling the fiber-soil interfacial bond and the fiber measurement range. Moreover, an expression was formulated to determine whether a POF would undergo plastic deformation when measuring soil deformation. The plasticity of POF may influence the reliability of measurements, especially for monitored geo-structures whose deformation would alternately increase and decrease. Taken together, these results indicate that in terms of the interfacial parameters studied here the POF is feasible for monitoring soil deformation as long as the plastic deformation issue is carefully addressed.

High Temperature Fracture Mechanisms in Monolithic and Particulate Reinforced Intermetallic Matrix Composite Processed by Spray Atomization and Co-Deposition (분무성형공정에 의한 세라믹미립자 강화형 금속간화합물 복합재료의 고온파괴거동)

  • Chung, Kang;Kim, Doo-Hwan;Kim, Ho-Kyung
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.7
    • /
    • pp.1713-1721
    • /
    • 1994
  • Intermetallic-matrix composites(IMCs) have the potential of combing matrix properties of oxidation resistance and high temperature stability with reinforcement properties of high specific strength and modulus. One of the major limiting factors for successful applications of these composite at high temperatures is the formation of interfacial reactions between matrix and ceramic reinforcement during composite process and during service. The purpose of the present investigation is to develop a better understanding of the nature of creep fracture mechanisms in a $Ni_{3}Al$ composite reinforced with both $TiB_{2}$ and SiC particulates. Emphasis is placed in the roles of the products of the reactions in determining the creep lifetime of the composite. In the present study, creep rupture specimens were tested under constant ranging from 180 to 350 MPa in vacuum at $760^{\cric}C$. The experimental data reveal that the stress exponent for power law creep for the composite is 3.5, a value close to that for unreinforced $Ni_{3}Al$. The microstructural observations reveal that most of the cavities lie on the grain boundaries of the $Ni_{3}Al$ matrix as opposed to the large $TiB_{2}/Ni_{3}Al$ interfaces, suggesting that cavities nucleate at fine carbides that lie in the $Ni_{3}Al$ grain boundaries as a result of the decomposition of the $SiC_{p}$. This observation accounts for the longer rupture times for the monolicthic $Ni_{3}Al$ as compared to those for the $Ni_{3}Al/SiC_{p}/TiB_{2} IMC$. Finally, it is suggested that creep deformation in matrix appears to dominate the rupture process for monolithic $Ni_{3}Al$, whereas growth and coalescence of cavities appears to dominate the rupture process for the composite.

Experimental and numerical investigation on flexural response of reinforced rubberized concrete beams using waste tire rubber

  • Memduh Karalar;Hakan Ozturk;Yasin Onuralp Ozkilic
    • Steel and Composite Structures
    • /
    • v.48 no.1
    • /
    • pp.43-57
    • /
    • 2023
  • The impacts of waste tire rubber (WTR) on the bending conduct of reinforced concrete beams (RCBs) are investigated in visualization of experimental tests and 3D finite element model (FEM) using both ANSYS and SAP2000. Several WTR rates are used in total 4 various full scale RCBs to observe the impact of WTR rate on the rupture and bending conduct of RCBs. For this purpose, the volumetric ratios (Vf) of WTR were chosen to change to 0%, 2.5%, 5% and 7.5% in the whole concrete. In relation to experimental test consequences, bending and rupture behaviors of the RCBs are observed. The best performance among the beams was observed in the beams with 2.5% WTR. Furthermore, as stated by test consequences, it is noticed that while WTR rate in the RCBs is improved, max. bending in the RCBs rises. For test consequences, it is clearly recognized as WTR rate in the RCB mixture is improved from 0% to 2.5%, deformation value in the RCB remarkably rises from 3.89 cm to 7.69 cm. This consequence is markedly recognized that WTR rates have a favorable result on deformation values in the RCBs. Furthermore, experimental tests are compared to 3D FEM consequences via using ANSYS software. In the ANSYS, special element types are formed and nonlinear multilinear misses plasticity material model and bilinear misses plasticity material model are chosen for concrete and compression and tension elements. As a consequence, it is noticed that each WTR rates in the RCBs mixture have dissimilar bending and rupture impacts on the RCBs. Then, to observe the impacts of WTR rate on the constructions under near-fault ground motions, a reinforced-concrete building was modelled via using SAP2000 software using 3-D model of the construction to complete nonlinear static analysis. Beam, column, steel haunch elements are modeled as nonlinear frame elements. Consequently, the seismic impacts of WTR rate on the lateral motions of each floor are obviously investigated particularly. Considering reduction in weight of structure and capacity of the members with using waste tire rubber, 2.5% of WTR resulted in the best performance while the construction is subjected to near fault earthquakes. Moreover, it is noticeably recognized that WTR rate has opposing influences on the seismic displacement behavior of the RC constructions.

Simulation of Explosion of the Semi-Fluid with Strong Elasticity Applying Coulomb-Mohr Theory (쿨롱-모어 이론을 이용한 강탄성 반유동체 폭발 시뮬레이션)

  • Kim, Gyeong-Su;Sung, Su-Kyung;Shin, Byeong-Seok
    • Journal of Korea Game Society
    • /
    • v.15 no.5
    • /
    • pp.143-152
    • /
    • 2015
  • Unlike simulating general 'particle-based fluid explosion', simulating fluid with elasticity requires various experimental methods in order to show the realistic deformation of the matter. The existing studies on particle-based viscoelastic fluid only focused on matters' plastic deformation which can be found in mud or paint, based on the maximum distortion energy theory and maximum shear stress theory. However, these former researches could not simulate the brittle deformation which can be seen from silicon or highly elastic rubber when great external forces above limits are applied. This study suggests a brittle simulation method based on the Coulomb-Mohr theory, the idea that a yield occurs when maximum stress on a matter reaches to its rupture stress. This theory has a significant difference from the existing particle-based simulations which measures the forces on a matter by length or volume. Using a strong-elastic semifluid which Coulomb-Mohr theory is applied, realistic deformation process of a matter was observed as its forced surface reached to the rupture stress. When semifluid hit the ground, the impact of deformation can be explained by using Coulomb-Mohr theory.

Fabrication and Mechanical Properties of Powder Metallurgical High Speed Steels with Various Co Contents (Co 함량이 다른 분말고속도공구강의 제조 및 기계적 특성)

  • 홍성현;배종수;김용진
    • Journal of Powder Materials
    • /
    • v.9 no.5
    • /
    • pp.303-306
    • /
    • 2002
  • P/M high speed steels with various Co contents were fabricated by gas atomization and Canning/HIP process. As Co content in P/M high speed steel increased, hardness, transverse rupture strength and yield strength in compressive testing increased due to solid solution hardening of Co in matrix. Especially, PM high speed steels with Co have high deformation resistance to repeated compressive loading.

Three-Dimensional Crystallizing $\pi$-Bondings and Creep of Metals

  • Oh, Hung-Kuk
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1995.03a
    • /
    • pp.238-251
    • /
    • 1995
  • Creep of metals has been explained conventionally by dislocation climb and grain boundary sliding indiffusion controlled process. The reorienations of the atoms in the grain by three dimensional crystallizing $\pi$-bondings are visualized as grain rotatins during slow deformation, fold formatin at triple point, increased crevice dspace between grains. grain boundary sliding, grain boundary micration and formation of cracks at the grain boundaries . And also the rupture time and average creep strain rate are explained by the three-dimensional crystallizing $\pi$- bondings and they can be determined by uniaxial tensile test.

  • PDF

Load-Deformation Relationship of Single Bolted Connections (단일볼트 지압접합부의 힘-변형관계)

  • Kim, Dae Kyung;Lee, Cheol Ho;Jin, Seung Pyo;Yoon, Seong Hwahn
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.5
    • /
    • pp.341-352
    • /
    • 2017
  • Well designed group bolted connections can exhibit excellent ductile behavior through the bearing mechanism until the occurrence of shear rupture in the bolt or in the connecting plate. This excellent ductility can be utilized in favor of economical connection design. In this study, comprehensive tests on single-bolt bearing connections were conducted and analyzed considering bearing boundary conditions. The primary objective was to propose a generalized bearing strength and load-deformation relationship that can be used for designing group-bolted connections. To this end, new bearing strength formula, deformation limits as well as new load-deformation relationship were first proposed. Especially the proposed load-deformation relationship can reflect the stiffness, strength, and geometrical boundary conditions of the joint. The proposed formula and relationship are validated based on test results.

Development of Numerical Tool considering Interfacial Fracture Behavior in Repaired RC Structure (보수.보강된 RC 구조물의 경계면 파괴를 고려한 수치해석 기법 개발)

  • 임윤묵;김문겸;신승교;고태호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.553-558
    • /
    • 2000
  • In this study, a numerical simulation that can effectively predict the interfacial fracture behavior in repaired structures is developed using the axial deformation link elements. In repaired structures, concrete and interface are considered as quais-brittle materials, and steel plate as a repair material and reinforcement are modeled as elasto-plastic materials. The behavior of repaired reinforced concrete structures under flexural loading conditions is numerically simulated, and compaired with experimental results. The strengthening effect according to the length and thickness of the repair material is studied and rip-off, debonding and rupture failure mechanism of interface between substrate and repair materials are detected. It is shown that the interface properties affect on the mechanical behavior of repaired structures. Therefore, the developed numerical method using axial deformation link elements can be used for determining the strengthening effects and failure mechanism of repaired structures.

  • PDF