• Title/Summary/Keyword: Runx family

Search Result 19, Processing Time 0.032 seconds

The expression patterns of RANKL and OPG in murine tooth eruption (치아발육시기에서의 RANKL 및 OPG의 발현 양상)

  • Hwang, Kyung-Mun;Kim, Eun-Jung;Kim, Young-Jin;Nam, Soon-Hyeun;Kim, Hyun-Jung
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.33 no.2
    • /
    • pp.290-303
    • /
    • 2006
  • Tooth eruption is a complex and tightly regulated process that involves cells of the tooth organ and the surrounding alveolus. Osteoclast precursors must be recruited into the dental follicle prior to the onset of eruption. This function of dental follicle may be regarded as the ability of bone remodeling characterized by the interaction of osteoclasts and osteoblasts. This is because tooth eruption is a localized event in which many of the genes required for eruption are expressed in the dental follicle. RANKL is a membrane-bound protein that is a member of the TNF ligand family. which is present on bone marrow stromal cells and osteoblasts, and induces osteoclast formation and activation from precursor cell. The biologic effect of RANKL is inhibited by OPG and, in bone, the relative ratio of RANKL and OPG modulates osteoclastogenesis. To evaluate the roles of RANKL and OPG in tooth eruption and the relations with the expression pattern of Runx2, in situ hybridization was performed with mandibles of mice at postnatal stage 1, 3, 5, 7, 9 and 11. mRNA of RANKL, OPG, and Runx2 are expressed in dental follicle and surrounding tissue from P1 to 11. To determine the sites of osteoclastic activity during tooth eruption, mandibles were dissected. Peak osteoclastic activity in alveolar bone along the occlusal and basal regions was observed from P5 to 9, with osteoclasts in these regions being large and strongly TRAP-positive The specific spatio-temporal expression patterns of RANKL, OPG, and Runx2 in our study suggest that tooth eruption could be progressed through the interactions of molecular signaling among dental follicle, dental organ and alveolar bone, furthermore it means that dental follicle is quite important in tooth eruption In addition, it indicates that these genes (RANKL, OPG, and Runx2) play critical roles in tooth eruption.

  • PDF

Kalkitoxin attenuates calcification of vascular smooth muscle cells via RUNX-2 signaling pathways

  • Saroj K Shrestha;Se-Woong Kim;Yunjo Soh
    • Journal of Veterinary Science
    • /
    • v.24 no.5
    • /
    • pp.69.1-69.11
    • /
    • 2023
  • Background: Kalkitoxin (KT) is an active lipopeptide isolated from the cyanobacterium Lyngbya majuscula found in the bed of the coral reef. Although KT suppresses cell division and inflammation, KT's mechanism of action in vascular smooth muscle cells (VSMCs) is unidentified. Therefore, our main aim was to investigate the impact of KT on vascular calcification for the treatment of cardiovascular disease. Objectives: Using diverse calcification media, we studied the effect of KT on VSMC calcification and the underlying mechanism of this effect. Methods: VSMC was isolated from the 6 weeks ICR mice. Then VSMCs were treated with different concentrations of KT to check the cell viability. Alizarin red and von Kossa staining were carried out to examine the calcium deposition on VSMC. Thoracic aorta of 6 weeks mice were taken and treated with different concentrations of KT, and H and E staining was performed. Real-time polymerase chain reaction and western blot were performed to examine KT's effect on VSMC mineralization. Calcium deposition on VSMC was examined with a calcium deposition quantification kit. Results: Calcium deposition, Alizarin red, and von Kossa staining revealed that KT reduced inorganic phosphate-induced calcification phenotypes. KT also reduced Ca++-induced calcification by inhibiting genes that regulate osteoblast differentiation, such as runtrelated transcription factor 2 (RUNX-2), SMAD family member 4, osterix, collagen 1α, and osteopontin. Also, KT repressed Ca2+-induced bone morphogenetic protein 2, RUNX-2, collagen 1α, osteoprotegerin, and smooth muscle actin protein expression. Likewise, Alizarin red and von Kossa staining showed that KT markedly decreased the calcification of ex vivo ring formation in the mouse thoracic aorta. Conclusions: This experiment demonstrated that KT decreases vascular calcification and may be developed as a new therapeutic treatment for vascular calcification and arteriosclerosis.

Association of CYP39A1, RUNX2 and Oxidized Alpha-1 Antitrypsin Expression in Relation to Cholangiocarcinoma Progression

  • Khenjanta, Chakkaphan;Thanan, Raynoo;Jusakul, Apinya;Techasen, Anchalee;Jamnongkan, Wassana;Namwat, Nisana;Loilome, Watcharin;Pairojkul, Chawalit;Yongvanit, Puangrat
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.23
    • /
    • pp.10187-10192
    • /
    • 2015
  • Cytochrome P450 (CYP) enzymes are a large family of constitutive and inducible mono-oxygenase enzymes that play a central role in the oxidative metabolism of both xenobiotic and endogenous compounds. Several CYPs are involved in metabolism of oxysterols, which are cholesterol oxidation products whose expression may be dysregulated in inflammation-related diseases including cancer. This study focused on CYP39A1, which can metabolize 24-hydroxycholesterol (24-OH) that plays important roles in the inflammatory response and oxidative stress. We aimed to investigate the expression status of CYP39A1 and its transcription factor (RUNX2) in relation to clinical significance in cholangiocarcinoma (CCAs) and to determine whether 24-OH could induce oxidative stress in CCA cell lines. Immunohistochemistry showed that 70% and 30% of CCA patients had low and high expression of CYP39A1, respectively. Low expression of CYP39A1 demonstrated a significant correlation with metastasis. Our results also revealed that the expression of RUNX2 had a positive correlation with CYP39A1. Low expression of both CYP39A1 (70%) and RUNX2 (37%) was significantly related with poor prognosis of CCA patients. Interestingly, oxidized alpha-1 antitrypsin (ox-A1AT), an oxidative stress marker, was significantly increased in CCA tissues in which CYP39A1 and RUNX2 were down regulated. Additionally, immunocytochemistry showed that 24-OH could induce ox-A1AT in CCA cell lines. In conclusion, our study revealed putative roles of the CYP39A1 enzyme in prognostic determination of CCAs.

Role of RUNX Family Members in G1 Restriction-Point Regulation

  • Lee, Jung-Won;Bae, Suk-Chul
    • Molecules and Cells
    • /
    • v.43 no.2
    • /
    • pp.182-187
    • /
    • 2020
  • When cells are stimulated by growth factors, they make a critical choice in early G1 phase: proceed forward to S phase, remain in G1, or revert to G0 phase. Once the critical decision is made, cells execute a fixed program independently of extracellular signals. The specific stage at which the critical decision is made is called the restriction point or R-point. The existence of the R-point raises a major question: what is the nature of the molecular machinery that decides whether or not a cell in G1 will continue to advance through the cell cycle or exit from the cell cycle? The R-point program is perturbed in nearly all cancer cells. Therefore, exploring the nature of the R-point decision-making machinery will provide insight into how cells consult extracellular signals and intracellular status to make an appropriate R-point decision, as well into the development of cancers. Recent studies have shown that expression of a number of immediate early genes is associated with the R-point decision, and that the decision-making program constitutes an oncogene surveillance mechanism. In this review, we briefly summarize recent findings regarding the mechanisms underlying the context-dependent R-point decision.

Circadian Clock Gene Per1 Mediates BMP2-induced Osteoblast Differentiation in MC3T3-E1 Cells (MC3T3-E1 세포에서 BMP2에 의한 조골세포의 분화에 일주기 유전자 Per1이 미치는 영향)

  • Min, Hyeon-Young;Jang, Won-Gu
    • Journal of Life Science
    • /
    • v.27 no.5
    • /
    • pp.501-508
    • /
    • 2017
  • Bone morphogenetic proteins (BMPs) are multifunctional cytokines that play important roles in a variety of cellular functions. Among BMP family members, BMP2 efficiently promotes osteoblast differentiation through Smad-mediated runt-related transcription factor 2 (Runx2) expression. Several recent studies suggest that BMPs are associated with clock genes, in particular Bmal1. Bmal1 protein heterodimerizes with Clock protein and then induces period 1 (Per1) expression. However, the role of Per1 on osteoblast differentiation remains unclear. In this study, we investigated whether Per1 is involved in osteoblast differentiation. MC3T3-E1 cells were treated with BMP2 for induction of osteoblastic differentiation. Osteogenic maker gene and Per1 mRNA expression were measured using real-time PCR. Interestingly, BMP2 treatment induced Per1 mRNA expression in MC3T3-E1 cells. To further investigate the function of Per1 on osteoblast differentiation, MC3T3-E1 cells were transiently transfected with pCMV-Per1. Per1 overexpression increased Runx2 mRNA and protein levels. Also, mRNA expression and promoter activity of osteocalcin were upregulated by Per1 overexpression. To investigate the effect of interaction between Per1 and osteogenic condition, MC3T3-E1 cells were cultured in osteogenic medium containing ascorbic acid and ${\beta}$-glycerophosphate. Osteogenic medium-induced ALP staining level and mineralization were synergistically increased by overexpression of Per1. Taken together, these results demonstrate that Per1 is a positive regulator of osteoblast differentiation.

DNA binding partners of YAP/TAZ

  • Kim, Min-Kyu;Jang, Ju-Won;Bae, Suk-Chul
    • BMB Reports
    • /
    • v.51 no.3
    • /
    • pp.126-133
    • /
    • 2018
  • Hippo signaling plays critical roles in regulation of tissue homeostasis, organ size, and tumorigenesis by inhibiting YES-associated protein (YAP) and PDZ-binding protein TAZ through MST1/2 and LATS1/2 pathway. It is also engaged in cross-talk with various other signaling pathways, including WNT, BMPs, Notch, GPCRs, and Hedgehog to further modulate activities of YAP/TAZ. Because YAP and TAZ are transcriptional coactivators that lack DNA-binding activity, both proteins must interact with DNA-binding transcription factors to regulate target gene's expression. To activate target genes involved in cell proliferation, TEAD family members are major DNA-binding partners of YAP/TAZ. Accordingly, YAP/TAZ were originally classified as oncogenes. However, YAP might also play tumor-suppressing role. For example, YAP can bind to DNA-binding tumor suppressors including RUNXs and p73. Thus, YAP might act either as an oncogene or tumor suppressor depending on its binding partners. Here, we summarize roles of YAP depending on its DNA-binding partners and discuss context-dependent functions of YAP/TAZ.

Structural Studies on RUNX of Caenorhabditis elegans by Spectroscopic Methods

  • Son, Woo-Sung;Kim, Jong-Wan;Ahn, Hee-Chul;Park, Sung-Jean;Bae, Suk-Chul;Lee, Bong-Jin
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.6 no.1
    • /
    • pp.54-68
    • /
    • 2002
  • PEBP2/CBF (Polyomavirus Enhancer-core Binding Protein 2/Core Binding Factor), represents a new family of heterodimeric transcription factor. Those members play important roles in hematopoiesis and osteogenesis in mouse and human. PEBP2/CBF is a sequence-specific DNA binding protein. Each member of the PEBP2/CBF family of transcription factors is composed of two subunits, ${\alpha}$ and ${\beta}$. The evolutionarily conserved 128 amino acid region in ${\alpha}$ subunit has been called the Runt domain, which harbors two different activities, the ability to bind DNA and interact with the ${\beta}$ subunit. Recently, cDNA clones encoding the C. elegans Runt domain were isolated by screening a cDNA library. This gene was referred to run (Runt homologous gene). In this study, the basic experiments for the structural characterization of RUN protein were performed using spectroscopic methods. We have identified the structural properties of RUN using bioinformatics, CD and NMR. The limit temperature of the structural stability was up to 60$^{\circ}C$ with irreversible thermal process, and the structure of RUN seems to adopt ${\alpha}$ helices and one or more ${\beta}$ sheet or turn. The degree of NMR peak dispersion and intensity was increased by addition of glycine. Therefore, glycine could be used to alleviate the aggregation property of RUN in NMR experiment.

  • PDF

Association of the Single Nucleotide Polymorphisms in RUNX1, DYRK1A, and KCNJ15 with Blood Related Traits in Pigs

  • Lee, Jae-Bong;Yoo, Chae-Kyoung;Park, Hee-Bok;Cho, In-Cheol;Lim, Hyun-Tae
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.12
    • /
    • pp.1675-1681
    • /
    • 2016
  • The aim of this study was to detect positional candidate genes located within the support interval (SI) regions based on the results of red blood cell, mean corpuscular volume (MCV), and mean corpuscular hemoglobin quantitative trait locus (QTL) in Sus scrofa chromosome 13, and to verify the correlation between specific single-nucleotide polymorphisms (SNPs) located in the exonic region of the positional candidate gene and the three genetic traits. The flanking markers of the three QTL SI regions are SW38 and S0215. Within the QTL SI regions, 44 genes were located, and runt-related transcription factor 1, dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 1A (DYRK1A), and potassium inwardly-rectifying channel, subfamily J, member 15 KCNJ15-which are reported to be related to the hematological traits and clinical features of Down syndrome-were selected as positional candidate genes. The ten SNPs located in the exonic region of the three genes were detected by next generation sequencing. A total of 1,232 pigs of an $F_2$ resource population between Landrace and Korean native pigs were genotyped. To investigate the effects of the three genes on each genotype, a mixed-effect model which is the considering family structure model was used to evaluate the associations between the SNPs and three genetic traits in the $F_2$ intercross population. Among them, the MCV level was highly significant (nominal $p=9.8{\times}10^{-9}$) in association with the DYRK1A-SNP1 (c.2989 G$F_2$ intercross, our approach has limited power to distinguish one particular positional candidate gene from a QTL region.

Inhibition of Osteoclast Differentiation and Promotion of Osteogenic Formation by Wolfiporia extensa Mycelium

  • Tae Hyun Son;Shin-Hye Kim;Hye-Lim Shin;Dongsoo Kim;Jin-Sung Huh;Rhim Ryoo;Yongseok Choi;Sik-Won Choi
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.9
    • /
    • pp.1197-1205
    • /
    • 2023
  • Osteoporosis, Greek for "porous bone," is a bone disease characterized by a decrease in bone strength, microarchitectural changes in the bone tissues, and an increased risk of fracture. An imbalance of bone resorption and bone formation may lead to chronic metabolic diseases such as osteoporosis. Wolfiporia extensa, known as "Bokryung" in Korea, is a fungus belonging to the family Polyporaceae and has been used as a therapeutic food against various diseases. Medicinal mushrooms, mycelium and fungi, possess approximately 130 medicinal functions, including antitumor, immunomodulating, antibacterial, hepatoprotective, and antidiabetic effects, and are therefore used to improve human health. In this study, we used osteoclast and osteoblast cell cultures treated with Wolfiporia extensa mycelium water extract (WEMWE) and investigated the effect of the fungus on bone homeostasis. Subsequently, we assessed its capacity to modulate both osteoblast and osteoclast differentiation by performing osteogenic and anti-osteoclastogenic activity assays. We observed that WEMWE increased BMP-2-stimulated osteogenesis by inducing Smad-Runx2 signal pathway axis. In addition, we found that WEMWE decreased RANKL-induced osteoclastogenesis by blocking c-Fos/NFATc1 via the inhibition of ERK and JNK phosphorylation. Our results show that WEMWE can prevent and treat bone metabolic diseases, including osteoporosis, by a biphasic activity that sustains bone homeostasis. Therefore, we suggest that WEMWE can be used as a preventive and therapeutic drug.