• Title/Summary/Keyword: Runoff water

Search Result 2,674, Processing Time 0.03 seconds

Trace Metal Contamination and Solid Phase Partitioning of Metals in National Roadside Sediments Within the Watershed of Hoidong Reservoir in Pusan City (부산시 회동저수지 집수분지 내 국도도로변 퇴적물의 미량원소 오염 및 존재형태)

  • Lee Pyeong-Koo;Kang Min-Joo;Youm Seung-Jun;Lee In-Gyeong;Park Sung-Won;Lee Wook-Jong
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.5
    • /
    • pp.20-34
    • /
    • 2006
  • This study was undertaken to assess the anthropogenic impact on trace metal concentrations (Zn, Cu, Pb, Cr, Ni, and Cd) of roadside sediments (N = 70) from No.7 national road within the watershed of Hoidong Reservoir in Pusan City and to estimate the potential mobility of selected metals using sequential extraction. We generally found high concentrations of metals, especially Zn, Cu and Pb, affected by anthropogenic inputs. Compared to the trace metal concentrations of uncontaminated stream sediments, arithmetic mean concentrations of roadside sediments were about 7 times higher for Cu, 4 times higher for Zn, 3 times higher for Pb and Cr and, 2 times higher for Ni and As. Speciation data on the basis of sequential extraction indicate that most of the trace metals considered do not occur in significant quantities in the exchangeable fraction, except for Cd and Ni whose exchangeable fractions are appreciable (average 29.3 and 25.8%, respectively). Other metals such as Zn (51.4%) and Pb (45.2%) are preferentially bound to the reducible fraction, and therefore they can be potentially released by a pH decrease and/or redox change. Copper is mainly found in the organic fraction, while Cd is highest in the exchangeable fraction, and Cr and Ni in the residual fraction. Considering the proportion of metals bound to the exchangeable and carbonate fractions, the comparative mobility of metals probably decreases in the order of Cd>Ni>Pb>Zn>Cr>Cu. Although the total concentration data showed that Zn was typically present in potentially harmful concentration levels, the data on metal partitioning indicated that Cd, Ni and Pb pose the highest potential hazard for runoff water. As potential changes of redox state and pH may remobilize the metals bound to carbonates, amorphous oxides, and/or organic matter, and may release and flush them through drain networks into the watershed of Hoidong Reservoir, careful monitoring of environmental conditions appears to be very important.

Estimation of the Total Terrestrial Organic Carbon Flux of Large Rivers in Korea using the National Water Quality Monitoring System (수질측정망을 이용한 국내 대하천 하구를 통한 총유기탄소 유출량 산정과 비교)

  • Park, Hyung-Geun;Ock, Giyoung
    • Korean Journal of Environmental Biology
    • /
    • v.35 no.4
    • /
    • pp.549-556
    • /
    • 2017
  • Rivers continuously transport terrestrial organic carbon matter to the estuary and the ocean, and they play a critical role in productivity and biodiversity in the marine ecosystem as well as the global carbon cycle. The amount of terrestrial organic carbon transporting from the rivers to ocean is an essential piece of information, not only for the marine ecosystem management but also the carbon budget within catchment. However, this phenomenon is still not well understood. Most large rivers in Korea have a well-established national monitoring system of the river flow and the TOC (Total Organic Carbon) concentration from the mountain to the river mouth, which are fundamental for estimating the amount of the TOC flux. We estimated the flux of the total terrestrial organic carbon of five large rivers which flow out to the Yellow Sea, using the data of the national monitoring system (the monthly mean TOC concentration and the monthly runoff of river flow). We quantified the annual TOC flux of the five rivers, showing their results in the following order: the Han River ($18.0{\times}10^9gC\;yr^{-1}$)>>Geum River ($5.9{\times}10^9gC\;yr^{-1}$)>Yeongsan River ($2.6{\times}10^9gC\;yr^{-1}$)>Sumjin River ($2.0{\times}10^9gC\;yr^{-1}$)>>Tamjin River ($0.2{\times}10^9gC\;yr^{-1}$). The amount of the Han River, which is the highest in the Korean rivers, corresponds to be 4% of the annual total TOC flux of in the Yellow River, and moreover, to be 0.6% of Yangtze River.

Effects of Rice Straw Compost Application on Soil Chemical Properties and Soil Organic Carbon Stock in Paddy Fields (볏짚퇴비 사용이 논토양의 화학성 및 유기탄소 축적에 미치는 영향)

  • Ji-Eun Byeon;Seong Heon Kim;Jae Hong Shim;Sang Ho Jeon;Yun Hae Lee;Soon Ik Kwon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.68 no.2
    • /
    • pp.90-96
    • /
    • 2023
  • The aim of this study was to investigate the effect of application rate of rice straw compost on soil chemical properties and soil organic carbon stock (SOC stock). The experiments were performed with no fertilizer (NF), inorganic fertilizer (NPK), NPK + rice straw compost 7.5 ton ha-1 (NPKC7.5), NPK + rice straw compost 15 ton ha-1 (NPKC15), NPK + rice straw compost 22.5 ton ha-1 (NPKC22.5), and NPK + rice straw compost 30 ton ha-1 (NPKC30). The SOC and SOC stock were highest in the NPKC30 treatment at 22.8 g kg-1 and 71.2 Mg C ha-1, respectively. Rice production was in the range of 621.2-654.4 kg 10a-1 in NPKC22.5 and NPKC30 treatments, which was higher than that in the NPK treatment. However, with increase in compost application, the exchangeable K and Ca of the soil increased, and the exchangeable K and Ca were higher than the optimum range in NPKC22.5 and NPKC30 treatments. Excessive application of compost can have negative impacts on the environment, including nutrient accumulation in the soil and water pollution from nutrient runoff. Therefore, applying the standard amount of compost according to the agricultural environment would be appropriate, despite the relatively lower rice production and SOC stock than that observed with the application of 22.5 and 30 ton ha-1.

Determining Spatial and Temporal Variations of Surface Particulate Organic Carbon (POC) using in situ Measurements and Remote Sensing Data in the Northeastern Gulf of Mexico during El $Ni\tilde{n}o$ and La $Ni\tilde{n}a$ (현장관측 및 원격탐사 자료를 이용한 북동 멕시코 만에서 El $Ni\tilde{n}o$와 La $Ni\tilde{n}a$ 기간 동안 표층 입자성 유기탄소의 시/공간적 변화 연구)

  • Son, Young-Baek;Gardner, Wilford D.
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.15 no.2
    • /
    • pp.51-61
    • /
    • 2010
  • Surface particulate organic carbon (POC) concentration was measured in the Northeastern Gulf of Mexico on 9 cruises from November 1997 to August 2000 to investigate the seasonal and spatial variability related to synchronous remote sensing data (Sea-viewing Wide Field-of-view Sensor (SeaWiFS), sea surface temperature (SST), sea surface height anomaly (SSHA), and sea surface wind (SSW)) and recorded river discharge data. Surface POC concentrations have higher values (>100 $mg/m^3$) on the inner shelf and near the Mississippi Delta, and decrease across the shelf and slope. The inter-annual variations of surface POC concentrations are relatively higher during 1997 and 1998 (El Nino) than during 1999 and 2000 (La Nina) in the study area. This phenomenon is directly related to the output of Mississippi River and other major rivers, which associated with global climate change such as ENSO events. Although highest river runoff into the northern Gulf of Mexico Coast occurs in early spring and lowest flow in late summer and fall, wide-range POC plumes are observed during the summer cruises and lower concentrations and narrow dispersion of POC during the spring and fall cruises. During the summer seasons, the river discharge remarkably decreases compared to the spring, but increasing temperature causes strong stratification of the water column and increasing buoyancy in near-surface waters. Low-density plumes containing higher POC concentrations extend out over the shelf and slope with spatial patterns and controlled by the Loop Current and eddies, which dominate offshore circulation. Although river discharge is normal or abnormal during the spring and fall seasons, increasing wind stress and decreasing temperature cause vertical mixing, with higher surface POC concentrations confined to the inner shelf.