• 제목/요약/키워드: Runoff rate

검색결과 442건 처리시간 0.037초

강우의 개념적 시간분포와 설계홍수량 산정에 관한 연구 (The Estimations of A Conceptual Time Distribution of Rainfall and Design Flood)

  • 이병운;장대원;김형수;서병하
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2005년도 학술발표회 논문집
    • /
    • pp.937-942
    • /
    • 2005
  • It is necessary to estimate the runoff hydrograph and peak flood discharge using law of probability for synthetic flood control policy and design of hydraulic structures. Rainfall analysis is needed in the process of peak flood discharge estimation and the time distribution of a design rainfall is a very important process in the analysis. In this study, we estimate design flood for a small urban basin and a rural basin of medium scale which have different travel times. The Huff method is widely used in Korea for the time distribution of design rainfall to estimate design flood. So, we use Huff method and a conceptual method which is suggested in this study for the comparative purpose. The 100-year frequency rainfall is used to estimate design flood for each basin and the design flood is compared with the existing design flood. As the result, the design flood is overestimated $14.6m^3/sec$ by Huff method and is underestimated $70.9m^3/sec$ by a conceptual method for the rural basin. For the small urban basin, the design flood is excessively overestimated $294.65m^3/sec$ by Huff method and is overestimated $173m^3/sec$ by a conceptual method. The reason of excessive overestimation by Huff method in the small urban basin is that the increased rate of rainfall intensity according to the decrease of duration is large and the duration exceeds the time of concentration when the increased rainfall intensity is concentrated in a quartile. Therefore, we suggested a conceptual method for the time distribution of design rainfall by considering the rainless period and duration. Especially, the conceptual method might be useful for the small urban basin with short concentration time which the design flood is overestimated by Huff method.

  • PDF

도시유출해석을 위한 도시수문 모니터링 기법 적용 (Application of Urban Hydrologic Monitoring System for Urban Runoff Analysis)

  • 서규우
    • 한국방재학회 논문집
    • /
    • 제5권2호
    • /
    • pp.37-44
    • /
    • 2005
  • 본 연구의 대상유역인 동의대 시험유역은 공간적으로 주위가 산의 능선으로 둘러싸여 유역내의 유출은 거의 대부분 단일 유출구로만 유출이 이루어지며, 부산지방의 도시유역의 특징인 경사지형의 특성을 잘 반영하고 있다. 유역기초자료 및 기상관측장비(EMS)와 자동수위관측장비(AWS)를 통해 수집된 각종 수문자료들과 유역상세자료들을 조사하여 ILLUDAS 모형과 SWMM 모형, HEC-HMS 모형의 기본입력자료로 사용하여 시험유역 유출특성을 검토하고, HEC-HMS 모형에 대한 검정 및 검증을 통해 시험유역 저류지설계에 사용한다. HEC-HMS 모형에 소하천 설계기준인 30년 설계강우를 설정하고 불투수율의 변화양상에 따라 설계홍수량을 산정하고, 유출누가곡선상에서 저류지의 용량을 결정하였다. 시험유역의 최종 유출부 상류에 $54,000m^3$의 가상 저류지를 설계하였고, 저류지 설계 후 유출양상을 검토해본 결과 유출의 첨두량이 감소함을 확인할 수 있었다. 이는 저류지설계로 도시지역의 유출이 감소됨으로서 도시홍수방재에 있어서 적용성이 있음을 확인할 수 있었다.

도시 내배수시스템 실시간 운영모형의 개발 (Development of a Real Time Control Model for Urban Drainage Systems)

  • 전환돈;이양재;이정호;김중훈
    • 한국물환경학회지
    • /
    • 제23권5호
    • /
    • pp.748-755
    • /
    • 2007
  • To develop an efficient pump operating rule for a retard basin, it is necessary to estimate inflow to the retard basin accurately which is affected by the backwater effect at the outlet of the conduit. The magnitude of the backwater effect is dependent on the water depth of a retard basin; however, the depth is determined by the amount of inflow and outflow. Thus, a real time simulation system that is able to simulate urban runoff and the pump operation with the consideration of the backwater effect is required to estimate the actual inflow to a retard basin. With this system, the efficient pump operating rule can be developed to diminish the possible flood damage on urban areas. In this study, a realtime simulation system is developed using the SWMM 5.0 DLL and Visual Basic 6.0 equipped with EXCEL to estimate inflow considering the backwater effect. The realtime simulation can be done by updating realtime input data such as minutely observed rainfall and the depth of a retard basin. Using those updated input data, the model estimates actual inflow, the amount of outflow discharged by pumps and gates, the depth of each junction, and flow rate at a sewer pipe on realtime basis. The developed model was applied to the Joonggok retard basin and demonstrated that it can be used to design a sewer system and to estimate actual inflow through the inlet sewer to reduce the inundation risk. As results, we find that the model can contribute to establish better operating practices for the pumps and the flood drainage system.

도시유역에서 지체저류시설의 수문학적 설계에 관한 연구 (A Study on the Hydrologic Design of Detention Storage Ponds in Urbanized Area)

  • 이정식;이재준
    • 물과 미래
    • /
    • 제28권3호
    • /
    • pp.159-173
    • /
    • 1995
  • 본 연구는 도시화로 인해 야기되는 도시유역의 홍수재해를 경감시키기 위하여 우수유출억제대책으로 유역내의 일부에 지체저류시설을 설치하는 방안을 검토하는 것으로서, 도시화의 진전상태에 따라 도시유역의 수문응답특성을 파악하고 적정 지체저류시설의 위치와 크기를 결정하기 위해 유역면적이 각각 1$\textrm{km}^2$, 10$\textrm{km}^2$인 가상의 소유역 및 전유역과 실제 도시유역을 대상으로 해석하였다. 강우빈도, 토지이용단계, 배수패턴, 허용방류량의 규모에 대해 도시화의 진전상태에 따른 수문응답특성을 파악하였으며, 실유역으로는 서울특별시의 잠실 2 및 성내 1 유수지 배수구역을 선정하여 지체저류시설의 크기와 위치를 나타내는 회귀식을 유도하여 제시하였다.

  • PDF

한국의 경사지 밭의 토양 및 물의 보전 관리 전략 (Management Strategies to Conserve Soil and Water Qualities in the Sloping Uplands in Korea)

  • 양재이;유진희;김시주;정덕영
    • 농업과학연구
    • /
    • 제37권3호
    • /
    • pp.435-449
    • /
    • 2010
  • Soils in the sloping uplands in Korea are subject to intensive land use with high input of agrochemicals and are vulnerable to soil erosion. Development of the environmentally sound land management strategy is essential for a sustainable production system in the sloping upland. This report addresses the status of upland agriculture and the best management practices for the uplands toward the sustainable agriculture. More than 60% of Korean lands are forest and only 21% are cultivating paddy and upland. Uplands are about 7% of the total lands and about 62% of the uplands are in the slopes higher than 7%. Due to the site-specificity of the upland, many managerial and environmental problems are occurring, such as severe erosion, shallow surface soils with rocky fragments, and loadings of non-point source (NPS) contaminants into the watershed. Based on the field trials, most of the sloping uplands were classified as Suitability Class III-V and the major limiting factor was slope and rock fragments. Due to this, soils were over-applied with N fertilizer, even though N rate was the recommendation. This resulted in decreases in yield, degradation of soil quality and increases in N loading to the leachate. Various case studies drew management practices toward sustainable production systems. The suggested BMP on the managerial, vegetative, and structural options were to practice buffer strips along the edges of fields and streams, winter cover crop, contour and mulching farming, detention weir, diversion drains, grassed waterway, and slope arrangement. With these options, conservation effects such as reductions in raindrop impact, flow velocity, runoff and sediment loss, and rill and gully erosion were observed. The proper management practice is a key element of the conservation of the soil and water in the sloping upland.

Simulation of Effects of Swine Manure Application Rates on Nitrate Concentration in Runoff, Indiana, USA

  • Lim, Kyoung-Jae;Engel, Bernard A.;Jeon, Ji-Hong;Jones, Don;Sutton, Alan L.;Ok, Yang-Sik;Kim, Ki-Sung;Choi, Joong-Dae
    • 한국환경농학회지
    • /
    • 제28권1호
    • /
    • pp.38-46
    • /
    • 2009
  • Livestock manure is an important source of nutrients for crop production. However, farmers typically do not know the exact nutrient values for livestock manure. In many instances, manure has been viewed as a waste, and as a result it is applied close to the source resulting in over application of nutrients. Thus, the goal of nutrient application has often been applied to reduce the application expense rather than to maximize crop income. This results in wasted money and potentially negative impacts on water quality. Several livestock manure management scenarios were created based on agronomic nutrient requirements using the Utilization of Animal Manure as a Plant Nutrient (AMANURE) software to investigate water quality impacts with the National Agricultural Pesticide Risk Analysis (NAPRA) WWW modeling system. Application of manure at agronomic rates can result in high nitrate-nitrogen losses for some soil types, especially when applied in late fall. The application of manure at an agronomic rate does not necessarily equate to adequate water quality protection, and farmers must take care applying manure at agronomic rates, because nitrate-nitrogen loss potential varies spatially and temporarily. Nutrient loss probability maps for Indiana at 5%, 10%, 25%, and 50% values were created to demonstrate potential water quality impacts when livestock manure is applied to cropland at agronomic rates. The NAPRA WWW system coupled with AMANURE can be used to identify site-specific livestock manure management plans that are environmentally sound and agronomically appropriate.

자연형 도로 비점오염저감시설의 저감효율 및 적용성 연구 (A Study on Removal Efficiency and Applicability of Natural Type Road Non-point Pollutant Reduction Facilities)

  • 이상혁;조혜진;김이형
    • 한국도로학회논문집
    • /
    • 제16권6호
    • /
    • pp.9-17
    • /
    • 2014
  • PURPOSES : The purpose of this study is to assess removal efficiency of non-point pollutants and applicability for non-point pollutant reduction facilities by conducting the demonstration project operation. METHODS : In order to analyze removal efficiency of non-point pollutants for facilities such as a grassed swale, a small constructed wetland, a free water surface wetland, a horizontal sub-surface flow wetland, and a sand filtration, the field data including specifications of facilities, rainfall, inflow and runoff rainfall effluent etc. was acquired after occurring rainfall events, and the acquired data was analyzed for removal efficiency rate to assess road non-point pollutants facilities using event mean concentration (EMC) and summation of load (SOL) methods. RESULTS : The results of analyzing rainfall effluent, non-point pollutant sources showed that total suspended solid (TSS), chemical oxygen demand (COD), biochemical oxygen demand (BOD), total nitrogen (TN), total phosphorus (TP), chrome (Cr), zinc (Zn), and lead (Pb) can be removed through non-point pollutant reduction facilities by 60.3% ~ 100%. Especially removal efficiency of TSS, COD and BOD is relatively higher than removal efficiency of other non-point pollutant sources in all kind of non-point pollutant facilities. CONCLUSIONS : Based on the result of this study, even though natural type of non-point pollutant reduction facilities for roads occupy small areas comparing with drainage basin areas, most of non-point pollutant sources would be removed through the facilities.

스노우팩-융설 계산을 위한 에너지수지 알고리즘 (An Energy Budget Algorithm for a Snowpack-Snowmelt Calculation)

  • 이정훈;고경석
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제16권5호
    • /
    • pp.82-89
    • /
    • 2011
  • Understanding snowmelt movement to the watershed is crucial for both climate change and hydrological studies because the snowmelt is a significant component of groundwater and surface runoff in temperature area. In this work, a new energy balance budget algorithm has been developed for melting snow from a snowpack at the Central Sierra Snow Laboratory (CSSL) in California, US. Using two sets of experiments, artificial rain-on-snow experiments and observations of diel variations, carried out in the winter of 2002 and 2003, we investigate how to calculate the amount of snowmelt from the snowpack using radiation energy and air temperature. To address the effect of air temperature, we calculate the integrated daily solar radiation energy input, and the integrated discharge of snowmelt under the snowpack and the energy required to generate such an amount of meltwater. The difference between the two is the excess (or deficit) energy input and we compare this energy to the average daily temperature. The resulting empirical relationship is used to calculate the instantaneous snowmelt rate in the model used by Lee et al. (2008a; 2010), in addition to the net-short radiation. If for a given 10 minute interval, the energy obtained by the melt calculation is negative, then no melt is generated. The input energy from the sun is considered to be used to increase the temperature of the snowpack. Positive energy is used for melting snow for the 10-minute interval. Using this energy budget algorithm, we optimize the intrinsic permeability of the snowpack for the two sets of experiments using one-dimensional water percolation model, which are $52.5{\times}10^{-10}m^2$ and $75{\times}10^{-10}m^2$ for the artificial rain-on-snow experiments and observations of diel variation, respectively.

완전 연동형 SWAT-MODFLOW 결합모형 (I) 모형의 개발 (The Development of Fully Coupled SWAT-MODFLOW Model (I) Model Development)

  • 김남원;정일문;원유승
    • 한국수자원학회논문집
    • /
    • 제37권6호
    • /
    • pp.499-507
    • /
    • 2004
  • 본 연구에서는 준 분포형 지표수 유출모형인 SWAT과 3차원 지하수 유동모형인 MODFLOW의 완전 연동형 결합모형을 독자적인 방식에 따라 개발했다. SWAT의 지하수 모형성분은 집중형이므로 분포형 매개변수와 변화하는 양수량, 지하수위의 변화 등을 고려하지 못하며 MODFLOW 모형은 주요 입력자료인 함양량의 정확한 산정이 어렵다는 한계를 안고 있다. 이를 극복하기 위해 준분포형 모형인 SWAT의 HRU를 분포형 모형인 MODFLOW의 격자로 대응시키기 위해 DEM을 이용한 HRU-GRID변환기법을 독자적으로 개발하였으며, 수문성분 교환은 지하수 함양량의 전달과정과 하천네트워크-대수층간의 상호작용을 고려하여 완성하였다 결합모형을 이용하면 지표수나 지하수 모형만으로는 해결되지 않는 하천-대수층간의 경계유량을 고려한 유출해석이 가능해짐으로써 지하수 유출량을 포함한 유역내 총 유출량의 신뢰성이 증대될 것으로 기대된다.

RCP 시나리오 기반 비관개기 강수량을 고려한 농업용 저수지의 용수공급 확률 분석 (Analysis of Water Supply Probability for Agricultural Reservoirs Considering Non-irrigation Period Precipitation using RCP Scenarios)

  • 방재홍;최진용;이상현
    • 한국농공학회논문집
    • /
    • 제60권4호
    • /
    • pp.63-72
    • /
    • 2018
  • The main function of an agricultural reservoir is to supply irrigation water to paddy rice fields in South Korea. Therefore, the operation of a reservoir is significantly affected by the phenology of paddy rice. For example, the early stage of irrigation season, a lot of irrigation water is required for transplanting rice. Therefore, water storage in the reservoir before irrigation season can be a key factor for sustainable irrigation, and it becomes more important under climate change situation. In this study, we analyzed the climate change impacts on reservoir storage rate at the beginning of irrigation period and simulated the reservoir storage, runoff, and irrigation water requirement under RCP scenarios. Frequency analysis was conducted with simulation results to analyze water supply probabilities of reservoirs. Water supply probability was lower in RCP 8.5 scenario than in RCP 4.5 scenario because of low precipitation in the non-irrigation period. Study reservoirs are classified into 5 groups by water supply probability. Reservoirs in group 5 showed more than 85 percentage probabilities to be filled up from half-filled condition during the non-irrigation period, whereas group 1 showed less than 5 percentages. In conclusion, reservoir capacity to catchment area ratio mainly affected water supply probability. If the ratio was high, reservoirs tended to have a low possibility to supply enough irrigation water amount.