• Title/Summary/Keyword: Runoff quality

Search Result 599, Processing Time 0.024 seconds

Improvement Measures of Pollutants Unit-Loads Estimation for Paddy Fields (논으로부터 배출되는 영양물질 오염부하량 원단위 산정 방법 개선 방안 검토)

  • Jung, Jae-Woon;Yoon, Kwang-Sik;Choi, Woo-Jung;Choi, Woo-Young;Joo, Seuk-Hun;Lim, Sang-Sun;Kwak, Jin-Hyeob;Lee, Soo-Hyung;Kim, Dong-Ho;Chang, Nam-Ik
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.3
    • /
    • pp.291-296
    • /
    • 2008
  • Pollutant unit load developed by Ministry of Environment (MOE) in 1995 has been a tool commonly used for water quality management and environmental policy decision. In spite of the convenience of the method in application, the shortcoming of the method has been criticized especially for nonpoint source pollution from paddy field. In this paper the estimation procedures of pollutant unit load from paddy field in the major river basins (Han, Nakdong, Geum, and Youngsan river) were investigated, and some suggestions of improvement measures of the unit-load estimation were made. The investigation showed that the distributions of rainfall, run-off, and run-off ratio, which are the most important factors affecting discharge amount of pollutants, were not similar among river basins. Such differences seemed to result in a greater unit loads estimation at Han river and at Nakdong river watersheds compared to the others. Therefore, it is not likely to be rationale to compare unit load among the watersheds without consideration of such differences. We conclude that estimation of unit-load through an intensive monitoring of pollutant discharge is crucial for better estimation of unit-load. When such an intensive monitoring is not easy due to labor and expense restriction, we suggest that unit-load should be estimated based on the storm-events which is a representative rainfall-runoff event of the area.

Estimation of Suspended Sediment Runoff for Landuse (토지이용에 따른 부유토사 유출 평가)

  • Kim, Joo-Hun;Oh, Deuk-Kun;Kim, Kyung-Tak
    • Journal of Wetlands Research
    • /
    • v.7 no.1
    • /
    • pp.119-128
    • /
    • 2005
  • Sediment yield and sediment transport in a basin bring about decrease of conveyance by the change of bed section, and have an influence on an aggravation of water quality and freshwater ecosystem. This study is to analyze the characteristics of outflow sediment according to land-use in Mushim-cheon flowing through forest area, farmland area and urban area. The upper stream of Mushim-cheon consists of forest area and farmland area. The suspended sediment is observed through 10 rainfall events in 5 sites. As a result of analyzing characteristics of landuse, the site of Bangse-gyo takes up 69% of Mushim-cheon, and farmland area(27.1%) and forest area(63.7%) take up 90.8% in Bangse-gyo. Accordingly, these two areas have the high possibility to occur sediment. The suspended sediment of this site shows the highest concentration. Transferring to the downstream and the urban, the concentration of suspended sediment gets decreased. The suspended sediment occurred in the upper stream of Mushim-cheon prior to Bangse-gyo has an influence on the downstream, and has a slight influence on the urban area. Also relational formula about suspended sediemtn and discharge is leaded. As a result of this formula, $R^{2}$ is 0.506 in the upper stream and is 0.656 in the downstream.

  • PDF

An Analysis of the Effect of Climate Change on Flow in Nakdong River Basin Using Watershed-Based Model (유역기반 모형을 이용한 기후변화에 따른 낙동강 유역의 하천유량 영향 분석)

  • Shon, Tae-Seok;Lee, Sang-Do;Kim, Sang-Dan;Shin, Hyun-Suk
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.10
    • /
    • pp.865-881
    • /
    • 2010
  • To evaluate influence of the future climate change on water environment, it is necessary to use a rainfall-runoff model, or a basin model allowing us to simultaneously simulate water quality factors such as sediment and nutrient material. Thus, SWAT is selected as a watershed-based model and Nakdong river basin is chosen as a target basin for this study. To apply climate change scenarios as input data to SWAT, Australian model (CSIRO: Mk3.0, CSMK) and Canadian models (CCCma: CGCM3-T47, CT47) of GCMs are used. Each GCMs which have A2, B1, and A1B scenarios effectively represent the climate characteristics of the Korean peninsula. For detecting climate change in Nakdong river basin, precipitation and temperature, increasing rate of these were analyzed in each scenarios. By simulation results, flow and increasing rate of these were analyzed at particular points which are important in the object basin. Flow and variation of flow in the scenarios for present and future climate changes were compared and analyzed by years, seasons, divided into mid terms. In most of the points temperature and flow rate are increased, because climate change is expected to have a significant effect on rising water temperature and flow rate of river and lake, further on the basis of this study result should set enhancing up water control project of hydraulic structures caused by increasing outer discharge of the Nakdong River Basin due to climate change.

Selection of Appropiate Plant Species of VFS (Vegetative Filter Strip) for Reducing NPS Pollution of Uplands (밭 비점오염저감을 위한 초생대 적정 초종 선정)

  • Choi, Kyung-Sook;Jang, Jeong-Ryeol
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.10
    • /
    • pp.973-983
    • /
    • 2014
  • This study focused on the selection of appropriate plant species of VFS (vegetative fiter strips) and the assessment of VFS effects for reducing NPS (non-point source) pollution from uplands. The experimental field was constructed with 1 control and 6 treated plots in the upland area of $1,500m^2$ with 5% slope which is located in Gunwi-gun, Gyeongbuk province. Six vegetation including Chufa, Common crabgrass, Barnyard grass, Turf grass, Tall fescue, Kenturky bluegrass, were applied to install VFS systems during the study period from June 2011 to Dec. 2012. The results of this study showed that 6.1~77.8% in runoff and 15.6~90.3% in TS, 49.9~96.6% in T-P, and 6.7~91.1% in T-N were reduced from the VFS treated plots. Generally high reduction effects were observed from TS, T-P, T-N, and SS, while BOD, TOC, and $NO_3^-$ showed low reductions. The best vegetation type was Turf grass showing higher reduction effects of NPS pollutions and having relatively easier maintenance efforts compared to other vegetations selected in this study. Based on these results, VFS technique found to be an effective management practice for reducing agricultural NPS pollutions in Korean upland conditions. Further study needs to be performed through various field experiments with long term monitoring in order to develop a design manual of VFS system for practical applications.

Analysis of Relationships Among the Pollutant Concentrations in Non-urban Area (비도시 유역에서 수질오염물질 사이의 상관관계 분석)

  • Jeon, Ji-Hong;Ham, Jong-Hwa;Yoon, Chun-Gyeong
    • Korean Journal of Ecology and Environment
    • /
    • v.34 no.3 s.95
    • /
    • pp.215-222
    • /
    • 2001
  • A statistical analysis was performed to evaluate relationships among the pollutant concentrations in non-urban area. The data obtained from two subcatchments in Hwa-Ong watershed during 1999 was used for correlation and regression analyses. Strong correlations were observed among the SS, COD, and TP, while it was not significant with TN. The reason fer weak correlation with TN might be that TN was high in dry-days and runoff in wet-days could not increase enough to change it substantially like in other pollutants. The correlations were stronger for the data in wet-days than in dry-days, and it was influenced by watershed characteristics. While TP-COD showed linear relationship from the regression analysis, SS-TP and SS-COD shelved intrinsically linear relationship between log-transformed TP and COD data and non-transformed SS data. The TP-COD showed strong relationship for all the combinations of monitored data, which implies that these two constituent concentrations varied in a similar pattern. The regression equations reported in the paper might be used to estimate one pollutant concentration from the other in pollutant loading estimates, and its application could be expanded to other non-urban watersheds if their characteristics are not significantly different from the study area. In water quality management projects, rigorous monitoring and its thorough evaluation are recommended to develop more reliable relationships among the pollutant concentrations which could be used in other area.

  • PDF

Dynamics of Turbid Water in a Korean Resernvoir with Selective Withdrawal Discharges (선택 취수하는 저수지에서 탁수의 동태)

  • Shin, Jae-Ki;Jeong, Seon-A;Choi, Il-Hwan;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.37 no.4 s.109
    • /
    • pp.423-430
    • /
    • 2004
  • This study intended to understand movements of turbid water in selective with drawal reservoirs before and after summer monsoon. Mean rainfall during November-May was low, compared to that during June-October. The reservoir water was discharged through watergates when previous rainfall and inflow exceeded 50 mm and $80\;m^3s^{-1}$, respectively. Intake towers were generally used except for the period of the high runoff. Average turbidity in gown-reservoir showed a difference of 29.9 NTU between premonsoon and postmonsoon. Diameter of particles of turbid water ranged between 0.435 and $482.9\;{\mu}m$. Fine particles such as clay were much denser than the larger particle. In the whole stations, clay component was relatively higher with a proportion of that in the particle distribution. Particle composition of turbid water showed that clay consisted of 94.4-98.9% and silt made of 1.1-5.6%. Analysis on turbid water movements derived from particle distribution showed a linear increase from the deep layer toward the surface layer in lower area of a reservoir. This was closely related with the hydraulic behavior of the reservoir, and heavily affected by the discharges through selective withdrawal towers and watergates. Turbid water originated from stream sediments in the middle area then resuspended in the down-reservoir causing a movement between the surface and middle layers of the reservoir. Therefore, such phenomenon needs to be understood for reservoir water quality management.

Evaluation of the Dressed Soil applied in Mountainous Agricultural Land (산지농경지에 투입되는 모재성토의 특성과 농업환경에 미치는영향)

  • Joo, Jin-Ho;Park, Chol-Soo;Jung, Yeong-Sang;Yang, Jae-E;Choi, Joong-Dae;Lee, Won-Jung;Kim, Sung-Il
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.4
    • /
    • pp.245-250
    • /
    • 2004
  • Farmers typically apply the dressed soil (coarse saprolite) for various reasons in the sloped upland with high altitude in Kangwon province. However, little researches on the impacts of application of dressed soil in uplands were conducted. Therefore, it is necessary to assess soil quality in this area and to study adverse effects on soil and water due to application of dressed soil. Coarse saprolite itself showed signiScantly poor chemical properties, Particularly P and organic matter contents were not enough for crops to grow. With respect to biological qualities such as enzyme activity and microbial population, coarse saprolite itself showed poor qualities. For example, bacterial population in coarse saprolite contains six times or ten times smaller populations. Based on survey at Jawoon-ri in Hongchon-gun, this region is susceptible for soil erosion due to massive amounts of coarse saprolite application, undesirably long slope length, etc. When weestimated soil loss, more than 40% of farming field in this region exceeded $11.2MT\;ha^{-1}\;yr^{-1}$. According to experiment by installing sediment basins. the sediment basin with up-down tillage and application with dressed soil had the highest soil loss and runofT, while the sediment basin with contour tillage and without soil dressing showed the lowest soil erosion and runoff.

Study on the Method for Data Interpolation using the Correlation among Runoff, Water Quality Concentration and Load (유출량, 수질 농도 및 부하량의 상호관계를 이용한 자료보간 방법에 관한 연구)

  • Oh, Chang-Ryeol;Jung, Woo-Cheol;Jin, Young-Hoon;Park, Sung-Chun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1474-1478
    • /
    • 2007
  • 수문 및 수질자료는 일정한 기준에 의한 관측치를 시계열 자료로 기록하거나 전송할 때 다양한 형태의 오차가 발생하게 되며 또한 수문 및 수질자료를 관측하는 측정기기의 고장과 유지관리 등의 어려움으로 다양한 형태의 결측 자료가 발생하고 있다. 이와 더불어 수문 및 수질자료는 시공간적 변동성이 크며 비선형성이 강한 특성을 갖고 있다. 이러한 수문 및 수질 자료를 이용하여 모형을 구축할 경우 다양한 형태의 잡음에 대한 검증 및 잡음저감이 필수적 요건이라 할 수 있다. 따라서 본 연구에서는 영산강 유역의 본류부를 대표하는 나주지점에 대한 유출량과 총유기탄소(TOC) 농도 및 TOC 부하량 예측모형을 개발하였으며, 이를 위한 방법으로는 잡음저감을 위하여 웨이블렛 변환과 인공신경망을 적용하였다. TOC 부하량 자료는 유출량과 TOC 자료간의 함수로서 표현이 가능함에 따라 유출량 및 TOC 자료가 결측되었을 경우 역함수에 의한 계산으로 결측 자료에 대한 보간이 가능하다. 따라서 본 연구의 주안점은 잠음 저감 및 인공신경망에 의해 최적화된 예측 모형이 결측된 유출량과 TOC 자료에 대한 역함수로 정도있는 유출량과 TOC 자료 생성 가능성을 검토하고자 한다. 본 연구의 적용 결과, 유출량 자료가 결측되었을 경우 TOC 및 TOC 부하량 예측으로 유출량 자료에 대한 간접추정 및 결측 자료에 대한 보간의 정도를 평가한 결과 $R^2$는 0.99 이상의 값을 보였다. 또한, TOC 자료가 결측되었을 경우 역시 $R^2$는 비교적 우수한 0.97 이상의 값을 보였다. 따라서 본 연구에서 개발한 유출량 및 TOC, TOC 부하량 예측모형의 개발은 정도있는 유출량 및 TOC 수질 자료의 생성이 가능할 것으로 기대된다.한 물순환 해석을 할 수 있는 기반을 확보 하였으며, 가용한 장 단기간의 관측자료와 물수지 분석 연산식의 추정치를 바탕으로 관측자료에 의한 물수지 분석을 수행하였다. 분석 결과로 산지 소하천 유역인 설마천 시험유역의 각 수문요소의 물이동간의 정량적인 값을 알 수가 있었으며, 앞으로 추가적이고 지속적인 수문모니터링이 운영되고 물순환 해석 모형에 의한 검증이 수행된다면 정량적인 물순환 관계를 규명할 수 있을 뿐만 아니라 이와 관련된 수문요소기술을 확보할 수 있을 것이다.절한 타협과 조정을 필요로 한다. 그러나 절제의 한계를 넘어선다고 생각되거나, 조정의 노력이 불가능하거나, 실패했을 때 폭력적인 행동으로 나타나게 된다. 리차즈(I.A Richards)는 분노와 공포는 일단 겉잡을 수 없는 경향이 있다고 하면서 오늘날 폭력에 대한 요구가 일상의 정서 생활에 있어, 억압을 통한, 빈곤함을 반영하고 있지 않은지 생각해봐야 할 것이라고 충고한다. 조성 가이드라인(안)을 제시하였다.EX>$\ulcorner$세종실록$\lrcorner$(世宗實錄) $\ulcorner$지리지$\lrcorner$(地理志)와의 비교를 해보면 상 중 하품의 통합 9개소가 삭제되어 있고, $\ulcorner$동국여지승람$\lrcorner$(東國與地勝覽) 에서는 자기소와 도기소의 위치가 완전히 삭제되어 있다. 이러한 현상은 첫째, 15세기 중엽 경제적 태평과 함께 백자의 수요 생산이 증가하자 군신의 변별(辨別)과 사치를 이유로 강력하게 규제하여 백자의 확대와 발전에 걸림돌이 되었다. 둘째, 동기(銅器)의 대체품으로 자기를 만들어 충당해야할 강제성 당위성 상실로 인한 자기수요 감

  • PDF

The Comparison of Water Budget and Nutrient Loading from Paddy Field According to the Irrigation Methods (관개방법에 따른 논에서의 수문 및 수질특성에 미치는 영향)

  • Jeon, Ji-Hong;Choi, Jin-Kyu;Yoon, Kwang-Sik;Yoon, Chun-Gyeong
    • Korean Journal of Ecology and Environment
    • /
    • v.38 no.1 s.110
    • /
    • pp.118-127
    • /
    • 2005
  • The comparison of water balance and nutrient loading from paddy field with different irrigation management were carried out during 1999 ${\sim}$ 2002 at two different sites; one is irrigated with groundwater and the other is irrigated with surface water. For the surface water irrigated paddy field, irrigation was performed continuously during growing season. Whereas, initial irrigation with groundwater was applied during initial growing season, and the ponded water depth was maintained by natural precipitation since initial irrigation. The runoff frequency of groundwater irrigated paddy field was less than that of surface water irrigated paddy field. The nutrient concentration of ponded water was high by fertilization at early cultural periods, so reducing surface drainage during fertilization period can reduce nutrient loading from paddy fields. Amount of irrigation water to surface water irrigated paddy field was higher than to groundwater irrigated paddy field and evapotranspiration was similar because it is influenced by climate. Overall input in and output from paddy field irrigated with goundwater were less than that with surface water. This study indicate that efficient water management can reduce surface drainage outflow, save water, and protect water quality. It might be important BMPs for paddy field.

A Study on Obtaining Waters to Restore the Water-ecosystem of Deokjin Pond in Jeonju: New Paradigm for Restoration of Urban Reservoirs (전주시 덕진연못의 수생태 복원을 위한 용수확보방안 연구: 도시 저수지 복원의 새로운 패러다임)

  • Choi, Seung-Hyun;Kim, Seok-Hwi;Lee, Jin Won;Kim, Kangjoo;Oh, Chang Whan
    • Economic and Environmental Geology
    • /
    • v.48 no.6
    • /
    • pp.467-475
    • /
    • 2015
  • The Deokjin Pond is one of the places representing Jeonju City's history but has the poor water quality. The pond has a storage of $88,741m^3$ and a drainage area of $3.77km^2$. It has been maintained only by the groundwater pumped from the upstream wells and the direct rainfalls on the water surface since the old streams replenishing the pond were turned into a part of the sewer system due to indiscreet urbanization. The lack of replenishing water as well as the organic-rich bottom sediment were suggested as two main causes deteriorating the water-ecosystem. In this study, possible measures obtaining waters for restoration of Deokjin Pond ecosystem are discussed. It is estimated that the present pond can be replenished about 32 times a year by the runoff when the drainage system in the watershed is recovered to a state before urbanization. To support this, the drainage system is compared with that of nearby Osong Pond, which shows relatively better water-ecosystem. Even though Osong Pond has a drainage area one-seventh of that of Deokjin Pond, its storage is more than the half of it. It is because its watershed has a near natural drainage system where the rain mostly infiltrates into soil and slowly discharges into the pond. Therefore, it is believed that the low impact development (LID), which is known as a technique restoring the water circulating system to a condition before development, would be helpful in obtaining waters required for Deokjin Pond ecosystem management.