• Title/Summary/Keyword: Runoff frequency

Search Result 161, Processing Time 0.026 seconds

Regional Drought Frequency Analysis with Estimated Monthly Runoff Series in the Nakdong River Basin (낙동강 유역의 유역 유출량 산정에 따른 지역별 가뭄 빈도분석)

  • 김성원
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.41 no.5
    • /
    • pp.53-67
    • /
    • 1999
  • In this study, regional frequency analysis is used to determine each subbasin drought frequency with watershed runoff which is calculated with Tank Model in Nakdong river basin. L-Monments methd which is almost unbiased and nearly normal distribution is applied to estimate paramers of drought frequency analysis of monthly runoff time series. The duration of '76-77 was the most severe drought year than othe rwater years in this study. To decide drought frequency of each subbasin from the main basin, it is calculated by interpolaing runoff from the frequency-druoght runoff relationship. and the linear regression analysis is accomplished between drought frequency of main basin and that of each subbasin. With the results of linear regression analysis, the drought runoff of each subbasin is calculated corresponing to drought frequency 10,20 and 30 years of Nakdong river basin considering safety standards for the design of impounding facilities. As the results of this study, the proposed methodology and procedure of this study can be applied to water budget analysis considering safety standards for the design of impounding facilities in the large-scale river basin. For this purpose, above all, it is recommanded that expansion of reliable observed runoff data is necessary instead of calculated runoff by rainfall-runoff conceptual model.

  • PDF

Power-law exponents of runoff-drainage area relationships vary with flow occurrence frequency: Observations from Korean rivers

  • Kim, JongChun;Paik, Kyungrock
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.246-246
    • /
    • 2015
  • Runoff at any given location along a stream can be expressed as a function of its upstream area. The runoff-drainage area relationship can be well expressed as power-law (Brush, 1961) with its exponent, ranging as high as unity (e.g., Stall and Fok, 1968) and as low as 0.5 in natural rivers. Here, we study the runoff-drainage area relationships for Han River and Nakdong River, Korea. We find that the relationships follow power-law and their exponents are highly related with occurrence frequency of flow. To support this, we analyze flow frequency with historical data measured over decades. Findings in this study can broaden our understanding on mechanisms behind the catchment response to runoff.

  • PDF

The Estimation of Soil Runoff in the Man-dae Cheun Basin by the using RUSLE Method (RUSLE 방법을 이용한 만대천 유역의 토사유출량 산정)

  • Choi, Han-Kuy;Park, Soo-Jin;Guk, Seong-Pyo
    • Journal of Industrial Technology
    • /
    • v.30 no.B
    • /
    • pp.99-108
    • /
    • 2010
  • This study was intended to estimate the soil runoff at the basin of Mandaechun where the measure needs to be taken to deal with the increasing muddy water resulting from soil runoff during wet season and torrential rain at the high reaches of the Soyang lake where highland vegetables are cultivated and soil replacement for improvement is carried out every two to three years. The study was carried out in such a way of identifying the topographic factors using geographical spatial data from Water Management Information System (WAMIS) and ARC-VIEW program and estimating the soil runoff by rainfall frequency using Revised Universal Soil Loss Equation (RUSLE), and furthermore, evaluating the soil runoff contribution at the basin of Mandaechun based on estimate of the soil runoff by section.

  • PDF

Estimation of soil runoff and contribution in the mandae-cheun basin by the using RUSLE methood (RUSLE방법을 이용한 만대천유역의 토사유출량 및 기여울 산정)

  • Park, Soo-Jin;Choi, Han-Kuy;Kuk, Sung-Pyo;Lim, Yun-Soo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.188-193
    • /
    • 2011
  • This study was intended to estimate the soil runoff at the basin of Mandaechun where the measure needs to be taken to deal with the increasing muddy water resulting from soil runoff during wet season and torrential rain at the high reaches of the Soyang lake where highland vegetables are cultivated and soil replacement for improvement is carried out every two to three years. The study was carried out in such a way of identifying the topographic factors using geographical spatial data from Water Management Information System (WAMIS) and ARC-VIEW program and estimating the soil runoff by rainfall frequency using Revised Universal Soil Loss Equation (RUSLE), and furthermore, evaluating the soil runoff contribution at the basin of Mandaechun based on estimate of the soil runoff by section.

  • PDF

Monitoring Pollutants Occurred by Non Point Sources - Rainfall Runoff from Cultivated Lands for a Sweet Potato and a Cherry Tree - (비점오염원에서 발생하는 오염물질 모니터링 - 고구마·벚나무경작지의 강우유출수를 대상으로 -)

  • Choi, Byoungwoo;Kang, Meea
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.1
    • /
    • pp.13-19
    • /
    • 2014
  • The management of non point sources was marked by the need for clean water environments. It was proposed the fundamentals to promote the reasonable land management in this study. We monitored rainfall events at two non point sources with different crop cultivations such as a sweet potato and a cherry tree for three years. Because the most important factor was rainfall, the rainfall runoff and pollutant loads were generated 100% in the case of rainfall ranges with 50 < rainfall (mm). However the frequency of rainfall runoff was interacted with the crop cultivation and soil characteristics in the case of rainfall ranges such as 30 < rainfall (mm) ${\leq}50^a$ and 10 < rainfall (mm) ${\leq}30^b$. The frequency of rainfall runoff was a : 60% and b : 5% in the cherry tree cultivation with growing significantly and pollutant loads were lower than that of the sweet potato cultivation. Meanwhile the frequency of rainfall runoff was a : 60% and b : 5% in the sweet potato cultivation.

Frequency Runoff Analysis by Storm Type using GIS and NRCS Method (GIS와 NRCS방법을 이용한 호우형태에 따른 빈도별 유출 분석)

  • Yeon, Gyu-Bang;Jung, Seung-Kwon;Kim, Joo-Hun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.6 no.1
    • /
    • pp.119-131
    • /
    • 2003
  • Rainfall-runoff process is under the control of hydrologic parameters having temporal and spatial variety. Accordingly, it is difficult to efficiently deal them since many parameters and various information are required to perform hydrologic simulation. So the purposes of this study is to estimate the runoff volume by frequency using GIS techniques and NRCS method. The analysis of frequency rainfall is analyzed using FARD 2002 program and the result of goodness of fit test show that Log-pearson type III is suitable distribute type for the applied area. TOPAZ program used for the analysis of DEM data examining into geological characteristic. NRCS curve numbers estimated using landuse map and soil map for the estimation of effective rain fall in the basin. The storm Type II and Type III were used as the type for the application of NRCS. The result of application show that the runoff volumes above 80 years frequency in return period have similar patterns regardless of Type II and Type III. In addition, the results of comparison with runoff volumes by frequency in the report of river improvement master plan show that it have similar volumes as the relative errors for them of 80, 100 years frequency are each 7.65%, 5.33%.

  • PDF

Application of the Equivalent Frequency Response Method to Runoff Analysis

  • Fujita, Mutsuhiro;Hamouda, Ruai;Tanaka, Gaku
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.S1
    • /
    • pp.101-110
    • /
    • 2000
  • This paper introduces the equivalent frequency response method(EFRM) into runoff analysis. This EFRM originally had been developed to analyze dynamic behavior of nonlinear elements such as threshold and saturation in control engineering. Many runoff models are described by nonlinear ordinary of partial differential equations This paper presents that these nonlinear differential equations can be converted into semi-linear ones based on EFRM. The word of "a semi-linear equation" means that the coefficients of derived equations depend on average rainfall.

  • PDF

Application of the Equivalent Frequency Response Method to Runoff Analysis

  • Mutsuhiro Fujita;Ruai Hamouda;Gaku Tanaka
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2000.05a
    • /
    • pp.1-2
    • /
    • 2000
  • This paper introduces the equivalent frequency response method (EFRM) into runoff analysis. This EFRM originally had been developed to analyze dynamic behavior of nonlinear elements such as threshold and saturation in control engineering. Many runoff models are described by nonlinear ordinary or partial differential equations. This paper presents that these nonlinear differential equations can be converted into semi-linear ones based on EFRM. The word of “a semi-linear equation” means that the coefficients of derived equations depend on average rainfall

  • PDF

Computing Probability Flood Runoff for Flood Forecasting & Warning System - Computing Probability Flood Runoff of Hwaong District - (홍수 예.경보 체계 개발을 위한 연구 - 화옹호 유역의 유역 확률홍수량 산정 -)

  • Kim, Sang-Ho;Kim, Han-Joong;Hong, Seong-Gu;Park, Chang-Eoun;Lee, Nam-Ho
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.4
    • /
    • pp.23-31
    • /
    • 2007
  • The objective of the study is to prepare input data for FIA (Flood Inundation Analysis) & FDA (Flood Damage Assessment) through rainfall-runoff simulation by HEC-HMS model. For HwaOng watershed (235.6 $km^{2}$), HEC-HMS was calibrated using 6 storm events. Geospatial data processors, HEC-GeoHMS is used for HEC-HMS basin input data. The parameters of rainfall loss rate and unit hydrograph are optimized from the observed data. HEC-HMS was applied to simulate rainfall-runoff relation to frequency storm at the HwaOng watershed. The results will be used for mitigating and predicting the flood damage after river routing and inundation propagation analysis through various flood scenarios.

A Determination of the Maximum Potential Runoff of Small Rural Basins (소하천(小河川) 유역(流域)의 잠재유출량(潛在流出量) 결정(決定))

  • Yoon, Yong Nam;Hong, Chang Seon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.2 no.1
    • /
    • pp.53-62
    • /
    • 1982
  • An effort of preliminary type has been made to develope a practical method for the waterway area determination of a drainage outlet in rural or agricultural areas. The Seoul meteorological station was selected as tile index station, and the maximum rainfalls-duration-frequency (R-D-F) relation of short-time intense rainfalls was first established. A frequency analysis of the daily rainfalls for the 75 stations selected throughout the country resulted the 50-year daily rainfall for each station. The rainfall factor, which is defined here as the ration of 50-year daily rainfalls of individual station and the index station, was determined for the 8 climatological regions divided in this study. Following the US SCS method the runoff number of a watershed was given based on the soil type, land-use pattern, and the surface treatment. With this runoff number and the R-D-F relationship the runoff factors for the index station were computed and hence a nomogram could be drawn which makes it possible to determine the runoff factor for a given rainfall number and a rainfall of specific duration and frequency. With this done, the potential runoff of a watershed for a given rainfall duration could be calculated, based on the unit hydrograph theory, by multiplying the rainfall factor, the runoff factor, and the drainage area of the watershed under consideration. Then, the maximum runoff potential was determined by varying the rainfall duration and finding out the duration which results the peak discharge of a gived return period.

  • PDF