• Title/Summary/Keyword: Runoff accumulation

Search Result 55, Processing Time 0.031 seconds

Runoff Volume Estimation Technique with Consideration of CN Distribution (CN 분포를 고려한 총 유출량 산정기법)

  • Yun, La-Young;Son, Kwang-Ik;Shin, Seoung-Chul;Roh, Jin-Wook;Shim, Jae-Ho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1880-1884
    • /
    • 2007
  • The Natural Resource Conservation Service Curve Number(NRCS-CN) method is one of the widely used methods for computation of runoff from a basin. However, NRCS-CN method has weak point in that the spatial land use distribution characteristics are ignored by using area weighted CN value. This study developed a program which can estimate runoff by considering spatial distribution of CN and flow accumulation at the outlet of the watershed by appling Moglen's method. Comparisons between the results from NRCS-CN method and this study showed good agreement with measured data of experimental watersheds. The developed program predicted lower runoff than the conventional NRCS-CN method. As a conclusion, this study proposes a new design direction which can simulate real runoff phenomena. And the developed program could be applied into runoff minimization design for a basin development.

  • PDF

New Flood Hazard Mapping using Runoff Mechanism on Gamcheon Watershed (유출메커니즘을 활용한 감천유역에서의 새로운 홍수위험지도 작성)

  • Kim, Tae Hyung;Han, Kun Yeun;Park, Jun Hyung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.6
    • /
    • pp.1011-1021
    • /
    • 2016
  • This study performs the potential flood hazard analysis by applying elevation data, soil data and land use data. The susceptibility maps linked to elevation, soil and land use are combined to develop the new types of flood hazard map such as runoff production map and runoff accumulation map. For the development of the runoff production map, land use, soil thickness, permeability, soil erosion and slope data are used as runoff indices. For the runoff accumulation map, elevation, knick point and lowland analysis data are used. To derive an integrated type of flood potential hazard, a TOPSIS (The Technique for Order of Preference by Similarity to Ideal Solution) technique, which is widely applied in MCDM (Multi-Criteria Decision Making) process, is adopted. The indices applied to the runoff production and accumulation maps are considered as criteria, and the cells of analysis area are considered as alternatives for TOPSIS technique. The model is applied to Gamcheon watershed to evaluate the flood potential hazards. Validation with large scale data shows the good agreements between historical data and runoff accumulation data. The analysis procedure presented in this study will contribute to make preliminary flood hazard map for the public information and for finding flood mitigation measures in the watershed.

Influence of Snow Accumulation and Snowmelt Using NWS-PC Model in Rainfall-runoff Simulation (NWS-PC 모형을 이용한 강우-유출 모의에서 적설 및 융설 영향)

  • Kang, Shin Uk;Rieu, Seung Yup
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1B
    • /
    • pp.1-9
    • /
    • 2008
  • The impact of snow accumulation and snowmelt in rainfall-runoff modelling was analyzed for the Soyanggang dam basin by comparing the measured and simulated discharges simulated by the NWS-PC model. Sugawara's conceptual model was used to simulate the snow accumulation and snowmelt phenomena and NWS-PC model was employed to simulate rainfall-runoff. Parameters in model calibration were estimated by the Multi-step Automated Calibration Scheme and optimized using SCE-UA algorithm in each step. The results of the model calibration and verification show that the model considering snowmelt process is better than the one without consideration of snowmelt under the performance criteria such as RMSE, PBIAS, NSE, and PME. The measured discharge time series has over 60 days of persistence. Correlograms for each simulation showed that the simulated discharge with snowmelt model reproduce the persistence closely to the measured discharge's while the one without snow accumulation and snowmelt model reproduce only 20 days of persistence. The study result indicates that the inclusion of snow accumulation and snowmelt model is important for the accurate simulation of rainfall-runoff phenomena in the Soyanggang dam basin.

Runoff Estimation with Consideration of Land-Use Distribution (토지이용 분포를 고려한 유출량 산정기법)

  • Son, Kwang-Ik
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.1
    • /
    • pp.97-102
    • /
    • 2008
  • The Natural Resource Conservation Service Curve Number(NRCS-CN) method is one of the widely used methods for computation of runoff from a basin. However, NRCS-CN method has a weak point in that the spatial land use distribution characteristics are ignored by using area-weighted CN value. This study developed a runoff estimation algorithm which can reflect the spatial land-use distribution. The algorithm consists of Moglen's theory and a developed flow accumulation estimation program in FORTRAN. Comparisons between the results from area-weighted CN method and this study showed reasonably good agreement with measured data of experimental watersheds. The developed program predicted lower runoff than the conventional NRCS-CN method. As a conclusion, this study proposes a new design direction which can simulate real runoff phenomena. And the developed program could be applied into runoff minimization design for a basin development.

The Effect of Impermeable Surface and Rainwater Infiltration Facilities on the Runoff pH of Housing Complexes (빗물 유출면 및 빗물 침투시설이 주거단지 유출빗물의 pH에 미치는 영향)

  • Hyun, Kyoung-Hak;Choi, Joung-Joo;Choung, Youn-Kyoo
    • Journal of Environmental Impact Assessment
    • /
    • v.19 no.1
    • /
    • pp.39-47
    • /
    • 2010
  • In order to examine the effect of impermeable surface (rooftop, outdoor parking lot) and rainwater infiltration facilities on runoff pH, pH was measured. pH measurement spots were splash blocks accepted roof runoff of 3 sites, infiltration boxes and trenches accepted parking lot runoff and plastic rainwater harvesting facility accepted roof runoff. These measurements were operated at 3 housing complexes from 2006 to 2009. The rainwater runoff pH was influenced by the quality of the runoff surface material (concrete), the age of the building, waterproofing methods according to each housing site, antecedent rainfall conditions and others. Rain garden, infiltration boxes and trenches decreased the alkalinity of runoff by detention and infiltrating the roof and outdoor parking lot runoff. These results mean that decentralized rainwater management facilities of housing complexes can reduce effect on the outskirt aquatic ecosystem by the accumulation of substances causing pH rising in the infiltration facilities and rain garden.

A Tank Model Application to Soyanggang Dam and Chungju Dam with Snow Accumulation and Snow Melt (적설 및 융설 모의를 포함한 탱크모형의 소양강댐 및 충주댐에 대한 적용)

  • Lee, Sang-Ho;An, Tae-Jin;Yun, Byung-Man;Shim, Myung-Pil
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.5
    • /
    • pp.851-861
    • /
    • 2003
  • Snow accumulation and snow melt was simulated and included in the computation of the watershed runoff for Soyanggang Dam and Chungju Dam. A modified Tank Model was used for the simulation, which has three serial tanks and a pulse response function. The model parameters were estimated through the global optimization method of Shuffled Complex Evolution-University of Arizona (SCE-UA). A watershed was divided into four zones of elevation. The temperature decrease of the zones was a rate of -0.6$^{\circ}C$/100m. Almost all precipitation from December to February become accumulated as snow, and then the snow melts and runs off from March to April. The average runoff with snow melt was greater than the average runoff without snow melt during the period from March to April. The improved amount from snow melt simulation was about one fifth of the observed one for Soyanggang Dam. The increased amount for Chungju Dam was about one fourth of the observed average runoff during the same period. Although the watershed runoff was simulated including snow melt, it was less than the observed one for both of the dams.

Soil quality Assessment for Environmentally Sound Agriculture in the Mountainous Soils - Installation of Monitoring System and Background Data Collection - (산지에서의 환경보전형 농업을 위한 토양의 질 평가 -모니터링 시스템의 구축과 기초자료의 수집-)

  • 최중대;김정제;정진철
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.39 no.2
    • /
    • pp.113-123
    • /
    • 1997
  • This study was initiated to build runoff plots, install soil and water quality monitoring systems and collect background data from the plots and neighboring soils as the 1st year study of a 5 year project to assess soil quality and develop the management practices for environmentally sound agriculture in mountainous soils. Eleven $3{\times}15m$ runoff plots and monitoring systems were installed at a field of National Alpine Agricultural Experiment Station to monitor soil quality and discharge of nonpoint source pollutants. Corn and potato were cultivated under different fertilizer, tillage and residue cover treatments. The soil has a single-layered cluster structure that has a relatively good hydrologic properties and can adsorb a large amount of nutrient. Concentrations of T-N, $NH_4$-N, and $NO_3$-N of surface soil sampled in the winter were relatively high. Runoff quality in the winter and thawing season in the spring was largely dependent on surface freezing, snow accumulation, temperature, surface thawing depth and so on. Runoff during the thawing season caused serious soil erosion but runoff quality during the winter was relatively good. Serious wind erosion from unprotected fields after the fall harvest were obserbed and best management practices to reduce the erosion need to be developed.

  • PDF

Determination of Infiltration Capacity Based on Observed Hydrological Data for the Upper Ansung Stream Basin (안성천 상류유역에서의 수문관측자료에 의한 침투능 곡선식의 결정)

  • Ahn, Tae-Jin
    • Journal of Wetlands Research
    • /
    • v.12 no.3
    • /
    • pp.99-106
    • /
    • 2010
  • In this study unit hydrograph and infiltration capacity curves have been determined based on rainfall-runoff data for the upper Ansung stream basin. Infiltration capacity curve also has been computed based on measurements of accumulated infiltration. Accumulated infiltration curve which has close relationship with unit hydrograph has been found in adopting the following two approach methods. In the first method the mean infiltration capacity with infiltration index method and the Kostiakov accumulation infiltration curves have been computed based on hydrological data for the GongDo gauging station of the upper Ansung stream basin. In the second method the accumulation curve has been determined through directly observed infiltration data for four points in the upper basin and has been compared with the infiltration capacity curves by three observed rainfall-runoff event.

Estimation of Runoff Characteristics of Nonpoint Pollutant Source in Railroad Area (철도지역의 비점오염원 유출특성)

  • Lee, Chun Sik;Seo, Gyu Tae;Yoon, Cho Hee;Kwon, Heon Gak;Lee, Jae Woon;Cheon, Se Uk
    • Journal of Environmental Science International
    • /
    • v.23 no.3
    • /
    • pp.511-520
    • /
    • 2014
  • The MFFn(Mass first flush), EMCs(Event mean concentrations) and runoff loads were analyzed for various rainy events(monitoring data from 2011 to 2012) in transportation area(rail road in station). The pollutant EMCs by volume of stormwater runoff showed the BOD5 9.6 mg/L, COD 29.9 mg/L, SS 16.7 mg/L, T-N 3.271 mg/L, T-P 0.269 mg/L in the transportation areas(Railroad in station). The average pollutant loading by unit area of stormwater runoff showed the BOD5 $27.26kg/km^2$, COD $92.55kg/km^2$, SS $50.35kg/km^2$, T-N $10.13kg/km^2$ and T-P $10.13kg/km^2$ in the transportation areas. Estimated NCL-curve(Normalized cumulated-curve) was evaluated by comparison with observed MFFn. MFFn was estimated by varying n-value from 10% to 90% on the rainy events. The n-value increases, MFFn is closed to '1'. As time passed, the rainfall runoff was getting similar to ratio of pollutants accumulation. The result of a measure of the strength of the linear relationship between observed data and expected data under model was good.

A Study on the Estimation Methods of Nonpoint Pollutant Unit Load - Focus on Nonpoint Pollutant Unit Load in Paddy Field - (비점오염 발생 원단위 산정방법에 대한 고찰 - 논 비점오염 원단위를 중심으로 -)

  • Choi, DongHo;Choi, Soon-Kun;Kim, Min-Kyeong;Hur, Seung-Oh;Hong, Sung Chang;Yeob, So-Jin;Yoon, KwangSik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.3
    • /
    • pp.15-22
    • /
    • 2019
  • In order to preserve water environment, Total Maximum Daily Load(TMDL) is used to manage the total amount of pollutant from various sources, and the annual average load of source is calculated by the unit load method. Determination of the unit load requires reliable data accumulation and analysis based on a reasonable estimation method. In this study, we propose a revised unit load estimation method by analyzing the unit load calculation procedure of National Institute of Environment Research(NIER) method. Both methods were tested using observed runoff ratio and water quality data of rice paddy fields. The estimated values with the respective NIER and revised NIER methods were highly correlated each other. However, the Event Mean Concentration(EMC) and the runoff ratio considered in the NIER method appeared to be influenced by rainfall classes, and the difference in unit load increases as the runoff and EMC increase. The error can be further increased when the EMC and runoff ratio are changed according to changes in rainfall patterns by climate change and change of agricultural activities. Therefore, it is recommended to calculate unit load by applying the revised NIER method reflecting the non point pollution runoff characteristics for different rainfall classes.