• Title/Summary/Keyword: Running speed

Search Result 1,201, Processing Time 0.031 seconds

Analysis of braking characteristics of electric multiple unit for train control system (열차제어시스템을 위한 전동차 제동특성 분석)

  • Choi, Don Bum;Oh, Sehchan;Kim, Min-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.887-895
    • /
    • 2018
  • This paper presents a braking model that can be used to design the safety distance of a train control system and a train braking system to increase the volume of traffic. For the braking model, a train set (electric multiple unit composed 6 cars) was tested. The factors that can affect the braking characteristics include the friction coefficient, braking pressure, and regenerative braking. The braking pressure was classified into service and emergency braking and reflected the characteristics of the vehicle. The external force acting on the running railway car was tested in accordance with KS R 9217, and the running resistance of the train is presented in the form of a polynomial. The dynamic behavior of the train running on a straight flat line was simulated using UM 8.3. The results were validated with experimental data, and the results were reasonable. With the validated model, a stopping distance was determined according to the initial braking speed and compared with the deceleration braking model. In addition, a safety distance for the train control system could be changed according to the frictional coefficient limits. These results are expected to be useful for analyzing the dynamic behavior of trains, and for analyzing various railway environments and improving the braking performance.

Real-scale Accelerated Testing to Evaluate Long-term Performance for Bridge/Earthwork Transition Structure Reinforced by Geosynthetics and Cement Treated Materials (토목섬유와 시멘트처리채움재로 보강한 교량/토공 접속구조의 장기공용성 평가를 위한 실물가속시험)

  • Lee, Il-Wha;Choi, Won-Il;Cho, Kook-Hwan;Lee, Kang-Myung;Min, Kyung-Chan
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.4
    • /
    • pp.251-259
    • /
    • 2014
  • The transition zone between an earthwork and a bridge effect to the vehicle's running stability because support stiffness of the roadbed is suddenly changed. The design criteria for the transition structure on ballast track were not particular in the past. However with the introduction of concrete track is introduced, it requires there is a higher performance level required because of maintenance and running stability. In this present paper, a transition structure reinforced with geosynthetics is suggested to improve the performance of existing bridge-earthwork transition structures. The suggested transition structure, in which there is reinforcing of the approach block using high-tension geosynthetics, has a structure similar to that of earth reinforced abutments. The utilized backfill materials are cement treated soil and gravel. These materials are used to reduce water intrusion into the approach block and to increase the recycling of surplus earth materials. An experiment was performed under the same conditions in order to allow a comparison of this new structure with the existing transition structure. Evaluation items are elastic displacement, cumulative settlement, and earth pressure. As for the results of the real-scale accelerated testing, the suggested transition structure has excellent performance for the reduction of earth pressure and settlement. Above all, it has high resistance the variation of the water content.

Study on Fault Diagnosis Method of Train Communication Network applied to the prototype Korean High Speed Train

  • Cho, Chang-Hee;Park, Min-Kook;Kwon, Soon-Man;Kim, Yong-Ju;Kim, Sung-Shin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2169-2173
    • /
    • 2003
  • The development project of Korean High Speed Train (KHST) was started in 1996. As a national research project, the KHST project aims for a development of the next generation prototype train that has a maximum speed of 350 km/h. The development process of prototype KHST including 7 vehicles was completed last year and currently the prototype train is on its way of test running over the test track with gradually increased speed. The prototype KHST uses the real time network called TCN (Train Communication Network) for exchanging information between various onboard control equipments. After 10 years of development and modification period, TCN was confirmed as international standard (IEC61375-1) for the electrical railway equipment train bus. In the prototype KHST, all major control devices are connected by TCN and exchange their information. Such devices include SCU (Supervisory Control Unit), ATC (Automatic Train Control), TCU (Traction Control Unit), and so forth. For each device that sends and receives data using TCN, a device has to find out whether TCN is in normal or failure state before its data exchange. And also a device must have a proper method of data validation that was received in a normal TCN state. This is a one of the major important factors for devices using network. Some misleading information can lead the entire system to a catastrophic condition. This paper briefly explains how TCN was implemented in the prototype KHST train, and also shows what kind of the fault diagnosis method was adopted for a fail safe operation of TCN system

  • PDF

Topology Optimization of Railway Brake Pad by Contact Analysis (접촉해석에 의한 철도차량용 제동패드의 형상 최적화)

  • Goo, Byeong-Choon;Na, In-Kyun
    • Tribology and Lubricants
    • /
    • v.30 no.3
    • /
    • pp.177-182
    • /
    • 2014
  • To stop a high speed train running at the speed of 300 km/h, the disc brake for the train should be able to dissipate enormous kinetic energy of the train into frictional heat energy. Sintered pin-type metals are mostly used for friction materials of high speed brake pads. A pad comprises several friction pins, and the topology, length, flexibility, composition, etc. have a great influence on the tribological properties of the disc brake. In this study, the topology of the friction pins in a pad was our main concern. We presented the optimization of the topology of a railcar brake pad with nine-pin-type friction materials by thermo-mechanical contact analysis. We modeled the brake pad with/without a back plate. To simulate a continuous braking, the pad or friction materials were rotated at constant velocity on the friction surface of the disc. We varied the positions of the nine friction materials to compare the temperature distributions on the disc surface. In a non-optimized brake pad, the distance between two neighboring friction materials in the radial direction from the rotational center of the disc was not equal. In an optimized pad, the distance between two neighboring friction materials in the radial direction was equal. The temperature distribution on the disc surface fluctuated more for the former than the latter. Optimizing the pad reduced the maximum temperature of the brake disc by more than 10%.

Fault Diagnosis of a High-speed Railway Reduction Unit Using Analysis of Vibration Characteristics (고속철도차량 감속구동장치의 이상진단을 위한 진동특성분석)

  • Ji, Hae Young;Lee, Kang Ho;Kim, Jae Chul;Lee, Dong Hyoung;Moon, Kyoung Ho
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.1
    • /
    • pp.26-31
    • /
    • 2013
  • The reduction unit is one of the most important components for railway vehicles because the torque of the motor must be transmitted to the wheels of the vehicle by the reduction unit. The faults in the reduction units of high-speed trains are caused by damage such as gear, fatigue. These have serious impacts on safety of the train during operation. To address this development of a system for monitoring, fault diagnosis of the reduction unit is needed to keep the vehicle running safely. Before that can be accomplished, it is most important to understand the vibration characteristics of the reduction unit in a normal state. Vibration diagnosis technology using characteristic-analysis of vibration waveform and frequency is known to be the most effective method for fault diagnosis. In this paper, we analyzed the vibration characteristics of the reduction units two Korean high-speed trains (KTX and KTX II), under normal conditions, by two test methods (driving gear test, full-vehicle test).

Performance Evaluation and Design of an Edible Fresh Corn Harvesting Machine (식용 풋옥수수 수확 시험장치 설계 및 성능평가)

  • Kang, Na Rae;Choi, Il Su;Kim, Young Keun;Choi, Yong;Yu, Seung Hwa;Woo, Jea Keun;Hyun, Chang Sik;Kim, Sung Kook
    • Journal of Drive and Control
    • /
    • v.16 no.4
    • /
    • pp.74-79
    • /
    • 2019
  • In this study, an edible fresh corn harvest testing machine was designed and manufactured. And harvesting performance was analyzed through the field test. The testing machine is of the tractor attached type. It is connected to the tractor PTO shaft to transfer power to the each part of the harvesting machine. And it harvests fresh corn by one row through the processes of cutting, stem crushing, detaching, and collecting. The performance test was performed at PTO speed (540, 750, 1050 rpm, respectively), working speed (0.1, 0.15, 0.2 m/s, respectively), and cropping cultivation (row spacing·hill spacing 70·25 cm, 70·40 cm, 90·30 cm, respectively). The performance test was repeated three times in the 15 m section. The detachment loss ratio, uncollected crop ratio, damage ratio, and harvest ratio were analyzed. As a result of the performance test, it was analyzed that the PTO speed 540 rpm, running speed of 0.1 m/s, and row spacing·hill spacing 70·40 cm were the optimal condition.

Modeling and Simulation for a Tractor Equipped with Hydro-Mechanical Transmission

  • Choi, Seok Hwan;Kim, Hyoung Jin;Ahn, Sung Hyun;Hong, Sung Hwa;Chai, Min Jae;Kwon, Oh Eun;Kim, Soo Chul;Kim, Yong Joo;Choi, Chang Hyun;Kim, Hyun Soo
    • Journal of Biosystems Engineering
    • /
    • v.38 no.3
    • /
    • pp.171-179
    • /
    • 2013
  • Purpose: A simulator for the design and performance evaluation of a tractor with a hydro-mechanical transmission (HMT) was developed. Methods: The HMT consists of a hydro-static unit (HSU), a swash plate control system, and a planetary gear. It was modeled considering the input/output relationship of the torque and speed, and efficiency of HSU. Furthermore, a dynamic model of a tractor was developed considering the traction force, running resistance, and PTO (power take off) output power, and a tractor performance simulator was developed in the co-simulation environment of AMESim and MATLAB/Simulink. Results: The behaviors of the design parameters of the HMT tractor in the working and driving modes were investigated as follows; For the stepwise change of the drawbar load in the working mode, the tractor and engine speeds were maintained at the desired values by the engine torque and HSU stroke control. In the driving mode, the tractor followed the desired speed through the control of the engine torque and HSU stroke. In this case, the engine operated near the OOL (optimal operating line) for the minimum fuel consumption within the shift range of HMT. Conclusions: A simulator for the HMT tractor was developed. The simulations were conducted under two operation conditions. It was found that the tractor speed and the engine speed are maintained at the desired values through the control of the engine torque and the HSU stroke.

Design of Wireless Power Transmission Antennas for Railway High-Speed Transponder System (철도교통용 고속 트랜스폰더 시스템 무선전력전송 안테나 설계)

  • Lee, Jae-Ho;Park, Sungsoo;Kim, Seong Jin;Ahn, IL Yeup
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.5
    • /
    • pp.602-611
    • /
    • 2017
  • In railway systems, the exchange of information between running trains and wayside equipment is a very important role in various applications such as position detection and train control. Track circuits have been used as the medium for information transmission between trains and wayside. However, track circuits must be installed continuously along the track on the ground, resulting in an inevitable increase in installation and maintenance costs. One of the most promising solutions to reduce these costs is to mix continuous information transmission (via wireless communication) and discontinuous information transmission (via transponder). In this study, we designed antennas of railway high-speed transponder readers and tags for wireless power transmission, which can be used to transmit information from ground to high-speed trains with a maximum speed of 400km/h. We also verified system performance through computational simulation and prototyping.

A Suggestion of Blasting Patterns of a Mine closed to Railway Line for Securing Safety of High Speed Train (고속철도 안전확보를 위한 노선 인접 광산의 발파패턴 제안)

  • Kim, Hyun-Ki;Lee, Sung-Hyeok;Lee, Jin-Wook;Choi, Chan-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.5
    • /
    • pp.1-9
    • /
    • 2015
  • Recently Honam high-speed railroad line is constructed in southern part of Korea. This line is for next generation HST named HEMU-430X. But there is a limestone mine near this line and this mine will make a process to dig a passageway under the railway line. In this case, safety of railroad system and stability of mine are crucial problems on both sides. By measuring mine blasting vibration and calculating regression equation, effect of mine blasting to train running is investigated quantitatively. 0.5 kine (cm/sec) is applied as a management specification of vibration based on field measurement. In this study, changes of blasting patterns are suggested to control vibration of mine blasting. And the effect of train vibration to mine is also invesitigated by numerical analysis.

Delay Predicting Modeling of Urban Freeway using Lane-based Characteristics (차로별 특성을 고려한 도시고속도로의 지체추정에 관한 연구)

  • Kim, Tae Gon;Jeong, Yu Na;Hassouna, Fady M.A.
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.5D
    • /
    • pp.467-476
    • /
    • 2010
  • Travel delay (TD) denotes a time difference between the running time of vehicle with a normal speed and the travel time of vehicle with a reduced speed for traversing the same segment of roadway, and is sometimes used as a measure of time delayed in the junction or bottleneck areas of roadway. Urban freeways in the foreign countries are often suffering from traffic delay within the entrance and exit ramp junction influence areas, as a freeway with the speed limit of 80 km/h or higher only during the rush hours, but those in our country are especially experiencing severe traffic delay on the mainline segments as well as within the entrance and exit ramp junction influence areas, as a freeway with the speed limit of 80 km/h or less regardless of the rush hours. So, the purpose in this study is to develop the models that could predict the travel delay within the ramp junction influence areas of urban freeway having the geographical features which differ from the expressway, and also examine the validity of the travel delay predictive models developed.