• Title/Summary/Keyword: Running Motion

검색결과 332건 처리시간 0.042초

달리기 시 체간의 골반-척추구조변형이 동적안정성에 미치는 연구 (Kinematic Analysis of Dynamic Stability Toward the Pelvis-spine Distortion during Running)

  • 박규태;유경석
    • 한국운동역학회지
    • /
    • 제23권4호
    • /
    • pp.369-376
    • /
    • 2013
  • The purposes of this study were to assess dynamic stability toward pelvis-spine column distortion during running and to compare the typical three-dimensional angular kinematics of the trunk motion; cervical, thoracic, lumbar segment spine and the pelvis from the multi-segmental spine model between exercise group and non-exercise group. Subjects were recruited as exercise healthy women on regular basis (group A, n=10) and non-exercise idiopathic scoliosis women (group B, n=10). Data was collected by using a vicon motion capture system (MX-T40, UK). The pelvis, spine segments column and lower limbs analysiaed through the 3D kinematic angular ROM pattern. There were significant differences in the time-space variables, the rotation motion of knee joint in lower limbs and the pelvis variables; obliquity in side bending, inter/outer rotation in twisting during running leg movement. There were significant differences in the spinal column that is lower-lumbar, upper-lumbar, upper-thoracic, mid-upper thoracic, mid-lower thoracic, lower thoracic and cervical spine at inclination, lateral bending and twist rotation between group A and group B (<.05, <.01 and <.001). As a results, group B had more restrictive motion than group A in the spinal column and leg movement behaved like a 'shock absorber". And the number of asymmetry index (AI) showed that group B was much lager unbalance than group A. In conclusion, non-exercise group was known to much more influence the dynamic stability of equilibrium for bilateral balance. These finding suggested that dynamic stability aimed at increasing balance of the trunk ROM must involve methods and strategies intended to reduce left/right asymmetry and the exercise injury.

KTX 후미 차량의 주행 안정성 해석 (Running Stability Analysis on the Tail Car of KTX)

  • 이승일;최연선
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2005년도 춘계학술대회 논문집
    • /
    • pp.350-355
    • /
    • 2005
  • The running stability and safety of a railway vehicle depends on the design characteristics and the contact condition between wheel and rail. In this paper, numerical simulations using ANSYS and ADAMS were done on the basis of the experimental observations. The results show that 0.6 Hz of the tail car motion is due to the natural mode of car combination of the KTX. The effects of the conicity of wheel and the lateral stiffness of the secondary suspension on the running stability were analyzed numerically using ADAMS/RAIL. The results also show 0.6 Hz as like the experimental observations. And the adoption of the wheel of GV40(${\lambda}=0.025$) brought the sway motion at the tail cars, but XP55(${\lambda}=0.055$) did not when the secondary lateral stiffness of the KTX was greater than 0.3 MN/m.

  • PDF

축소형 차량의 횡진동 해석 (Lateral Vibration Analysis of a Small Scale Railway Vehicle Model)

  • 이승일;손건호;최연선
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2004년도 추계학술대회 논문집
    • /
    • pp.417-422
    • /
    • 2004
  • The vibration of a running vehicle can be classified on lateral, longitudinal and vertical motions. The important factor on the stability and ride quality of a railway vehicle is the lateral motion. The contact between wheel and rail with conicity influences strongly on the lateral motion. In this study, an experiment for the vibration of a running railway vehicle was performed using a small scale railway vehicle model. Also, the effects on the car body, bogie and wheelset were examined for the weight and the stiffness of the first and second suspension. The experimental results showed that the lateral vibration increases as the wheel conicity and stiffness of the second suspension increase. And the lateral vibration of the bogie increases as the mass ratio between car body and bogie increases. Also, the lateral vibration of the wheel becomes high at low speed, while the wheel of 1/20 conicity makes severe vibration at high speed running.

  • PDF

움직임 벡터와 GPU를 이용한 인간 활동성 분석 (Analysis of Human Activity Using Motion Vector and GPU)

  • 김선우;최연성
    • 한국전자통신학회논문지
    • /
    • 제9권10호
    • /
    • pp.1095-1102
    • /
    • 2014
  • 본 논문에서는 실시간 감시 시스템에서 인간의 활동성을 분석하기 위하여 움직임 벡터를 사용하며, 고속연산에 GPU를 활용한다. 먼저 가장 중요한 부분인 전경으로부터 적응적 가우시안 혼합기법, 두드러진 움직임을 위한 가중치 차영상 기법, 움직임 벡터를 이용하여 인간이라고 판단되는 블랍을 검출하고, 추출된 움직임 벡터를 이용하여 사람의 활동성을 분석한다. 본 논문에서는 사람의 행동을 크게 {Active, Inactive}, {Position Moving, Fixed Moving}, {Walking, Running}의 세 가지 메타 클래스로 분류하고 인식하였다. 실험을 위해서 약 300개의 상황을 연출하였으며, 약 86%~98% 의 인식률을 보였다. 또한 $1920{\times}1080$ 크기 영상에서 CPU 기반은 4.2초 정도 걸렸는데, GPU 기반에서는 0.4초 이내로 빨라진 결과를 얻었다.

Prediction of a research vessel manoeuvring using numerical PMM and free running tests

  • Tiwari, Kunal;Hariharan, K.;Rameesha, T.V.;Krishnankutty, P.
    • Ocean Systems Engineering
    • /
    • 제10권3호
    • /
    • pp.333-357
    • /
    • 2020
  • International Maritime Organisation (IMO) regulations insist on reduced emission of CO2, noxious and other environmentally dangerous gases from ship, which are usually let out while burning fossil fuel for running its propulsive machinery. Contrallability of ship during sailing has a direct implication on its course keeping and changing ability, and tries to have an optimised routing. Bad coursekeeping ability of a ship may lead to frequent use of rudder and resulting changes in the ship's drift angle. Consequently, it increases vessels resistance and also may lead to longer path for its journey due to zigzag movements. These adverse effects on the ship journey obviously lead to the increase in fuel consumption and higher emission. Hence, IMO has made it mandatory to evaluate the manoeuvring qualities of a ship at the designed stage itself. In this paper a numerical horizontal planar motion mechanism is simulated in CFD environment and from the force history, the hydrodynamic derivatives appearing in the manoeuvring equation of motion of a ship are estimated. These derivatives along with propeller thrust and rudder effects are used to simulate different standard manoeuvres of the vessel and check its parameters against the IMO requirements. The present study also simulates these manoeuvres by using numerical free running model for the same ship. The results obtained from both these studies are presented and discussed here.

달리기 시 발의 인체측정학적 변인과 운동역학적 변인의 관계 (The Relationship between Anthropometric Parameters of the Foot and Kinetic Variables during Running)

  • Lee, Young Seong;Ryu, Jiseon
    • 한국운동역학회지
    • /
    • 제29권3호
    • /
    • pp.173-183
    • /
    • 2019
  • Objective: The aim of this study was to investigate the correlation coefficients between anthropometric parameters of the foot and kinetic variables during running. Method: This study was conducted on 21 healthy young adults (age: $24.8{\pm}2.1yes$, height: $177.2{\pm}5.8cm$, body mass: $73.3{\pm}7.3kg$, foot length: $256.5{\pm}12.3mm$) with normal foot type and heel strike running. To measure the anthropometric parameters, radiographs were taken on the frontal and sagittal planes, and determined the length and width of each segment and the navicular height. Barefoot running was performed at a preferred velocity ($3.0{\pm}0.2m/s$) and a fixed velocity (4.0 m/s) on treadmill (Bertec, USA) in order to measure the kinetic variables. The vertical impact peak force, the vertical active peak force, the braking peak force, the propulsion peak force, the vertical force at mid-stance (vertical ground reaction when the foot is fully landed in mid-stance or at the point where the weight was uniformly distributed on the foot) and the impact loading rate were calculated. Pearson's correlation coefficient was used to investigate the relationship between anthropometric variables and kinetical variables. The significance level was set to ${\alpha}=.05$. Results: At the preferred velocity running, the runner with longer forefoot had lower active force (r=-.448, p=.041) than the runner with short forefoot. At the fixed velocity, as the navicular height increases, the vertical force at full landing moment increases (r= .671, p= .001) and as the rearfoot length increases, the impact loading rate decreases (r=- .469, p= .032). Conclusion: There was a statistically significant difference in the length of fore-foot and rearfoot, and navicular height. Therefore it was conclude that anthropometric properties need to be considered in the foot study. It was expected that the relationship between anthropometric parameters and kinetical variables of foot during running can be used as scientific criteria and data in various fields including performance, injury and equipment development.

활주형 선박의 선형설계를 위한 통합 CAD/CAE 시스템 (Integrated CAD/CAE System for Planing Hull Form Design)

  • 김태윤;김동준
    • 수산해양기술연구
    • /
    • 제39권4호
    • /
    • pp.298-304
    • /
    • 2003
  • In this paper a free-form hull design program and performance prediction program for planing boat is introduced. This program enables the designer to do complex geometric hull shape design on a personal computer and accurately to predict power requirements for a given loading and velocity. For a free form design, Bezier curve model is adopted as a basic representation tool of curves and surfaces, and this program has versatile functions to do fairing jobs with a convenient graphical user interface. After creating a hull form the geometric data is provided in a manner compatible with a variety of analysis tools including 'Motion Analysis(by Zarnick)' for prediction of motion characteristics in regular waves, 'Running Attitude (by Savitsky)' for prediction of the running attitude and required power.

Relationship between Attenuation of Impact Shock at High Frequency and Flexion-Extension of the Lower Extremity Joints during Downhill Running

  • Ryu, Ji-Seon;Yoon, Suk-Hoon;Park, Sang-Kyoon
    • 한국운동역학회지
    • /
    • 제26권2호
    • /
    • pp.167-174
    • /
    • 2016
  • Objective: The purpose of this study was to determine the interrelationship between ranges of motion of the knee and ankle joints on the sagittal plane and the attenuation magnitude of impact shock at high frequency (9~20 Hz) in the support phase during downhill running. Method: Fifteen male heel-toe runners with no history of lower extremity injuries were recruited for this study (age, $25.07{\pm}5.35years$; height, $175.4{\pm}4.6cm$; mass, $75.8{\pm}.70kg$). Two uniaxial accelerometers were mounted to the tuberosity of tibia and sacrum, respectively, to measure acceleration signals. The participants were asked to run at their preferred running speed on a treadmill set at $0^{\circ}$, $7^{\circ}$, and $15^{\circ}$ downhill. Six optical cameras were placed around the treadmill to capture the coordinates of the joints of the lower extremities. The power spectrum densities of the two acceleration signals were analyzed and used in the transfer function describing the gain and attenuation of impact shock between the tibia and the sacrum. Angles of the knee and ankle joints on the sagittal plane and their angle ranges were calculated. The Pearson correlation coefficient was used to test the relationship between two variables, the magnitude of impact shock, and the range of joint angle under three downhill conditions. The alpha level was set at .05. Results: Close correlations were observed between the knee joint range of motion and the attenuation magnitude of impact shock regardless of running slopes (p<.05), and positive correlations were found between the ranges of motion of the knee and ankle joints and the attenuation magnitude of impact shock in $15^{\circ}$ downhill running (p<.05). Conclusion: In conclusion, increased knee flexion might be required to attenuate impact shock during downhill and level running through change in stride or cadence while maintaining stability, and strong and flexible ankle joints are also needed in steeper downhill running.