• Title/Summary/Keyword: Runge-Kutta scheme

Search Result 115, Processing Time 0.025 seconds

NUMERICAL METHODS FOR A STIFF PROBLEM ARISING FROM POPULATION DYNAMICS

  • Kim, Mi-Young
    • Korean Journal of Mathematics
    • /
    • v.13 no.2
    • /
    • pp.161-176
    • /
    • 2005
  • We consider a model of population dynamics whose mortality function is unbounded. We note that the regularity of the solution depends on the growth rate of the mortality near the maximum age. We propose Gauss-Legendre methods along the characteristics to approximate the solution when the solution is smooth enough. It is proven that the scheme is convergent at fourth-order rate in the maximum norm. We also propose discontinuous Galerkin finite element methods to approximate the solution which is not smooth enough. The stability of the method is discussed. Several numerical examples are presented.

  • PDF

A High Resolution Scheme for Cavitating Flow

  • Shin B. R.;Oh S. J.;Obayashi S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.169-177
    • /
    • 2005
  • A high resolution scheme for solving gas-liquid two-phase flows with cavitation is described. This scheme uses the curvilinear coordinate grid and solves the density based momentum equations for mixture of gas-liquid medium with a preconditioning method to treat both compressible and incompressible flow characteristics. The present preconditioned method is based on the Runge-Kutta explicit finite-difference scheme, and is improved by using the diagonalization, the flux difference splitting and the MUSCL-TVD schemes to save computational effort and to increase stability and resolvability, especially at gas-liquid contact surfaces. A homogeneous equilibrium cavitation model is used to treat the gas-liquid two-phase medium in cavitating flow as a locally homogeneous pseudo-single-phase medium. Therefore, it is easy to solve cavitating flow, including wave propagation, large density changes and incompressible flow characteristic at low Mach number. Some numerical results obtained by the present scheme are shown.

  • PDF

Development of a Three-Dimensional Euler Solver for Analysis of Basic Contraction Flow (수축부 기초 유동 해석을 위한 삼차원 Euler 방정식 풀개 개발)

  • Kim J.;Kim H. T.
    • Journal of computational fluids engineering
    • /
    • v.2 no.1
    • /
    • pp.8-12
    • /
    • 1997
  • The three-dimensional Euler equations are solved numerically for the analysis of contraction flows in wind or water tunnels. A second-order finite difference method is used for the spatial discretization on the nonstaggered grid system and the 4-stage Runge-Kutta scheme for the numerical integration in time. In order to speed up the convergence, the local time stepping and the implicit residual-averaging schemes are introduced. The pressure field is obtained by solving the pressure-Poisson equation with the Neumann boundary condition. For the evaluation of the present Euler solver, numerical computations are carried out for three contraction geometries, one of which was adopted in the Large Cavitation Channel for the U.S. Navy. The comparison of the computational results with the available experimental data shows good agreement.

  • PDF

Computation of Turbulent Flow around a Ship Model with Free-Surface (자유표면을 포함한 선체주위 난류유동 해석)

  • Jung-Joong Kim;Hyoung-Tae Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.38 no.1
    • /
    • pp.1-8
    • /
    • 2001
  • The computations of the turbulent flow around the ship models with the free-surface effects were carried out. Incompressible Reynolds-Averaged Navier-Stokes equations were solved by using an explicit finite-difference method with the nonstaggered grid system. The method employed second-order finite differences for the spatial discretization and a four-stage Runge-Kutta scheme for the temporal integration. For the turbulence closure, a modified Baldwin-Lomax model was exploited. The location of the free surface was determined by solving the equation of the kinematic free-surface condition using the Lax-Wendroff scheme and a free-surface conforming grid was generated at each time step so that one of the grid boundary surfaces always coincides with the free surface. An inviscid approximation of the dynamic free-surface boundary condition was applied as the boundary conditions for the velocity and pressure on the free surface. To validate the computational method developed in the present study, the computations were carried out for beth Wigley and Series 60 $C_B=0.6$ ship model and the computational results showed good agreements with the experimental data.

  • PDF

Thrust Characteristics of Dual Flapping Airfoils in a Biplane Configuration (복엽기 배치의 복식 플랩핑 에어포일들의 추력 특성)

  • Yu, Young-Bok;Han, Cheol-Heui;Cho, Jin-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.7
    • /
    • pp.9-17
    • /
    • 2005
  • The wake patterns and thrust characteristics of dual flapping airfoils in a biplane configuration are investigated using an unsteady panel method. To trace complicated wake shapes behind airfoils, a core addition scheme, a vortex core model, and the fourth order Runge-Kutta convection scheme are employed. Present results are verified by comparing them with flow visualization, exact solution and published computed results. The thickness and camber of thick airfoils has an effect of decreasing thrust. The airfoils produce maximum thrust when the phase angles between plunging and pitching motions are both 90 and 120 degrees. Thrust increases as the plunge velocity is increased, which is also found as the pitch amplitude is stepped up. Thrust decreases when the distance between the airfoils is less than 0.6c.

HIGH-ORDER ADAPTIVE-GRID METHOD FOR THE ANALYSIS OF UNSTEADY COMPRESSIBLE FLOW (비정상 압축성 유동 해석을 위한 고차 정확도 적응 격자 기법의 연구)

  • Chang, S.M.;Morris, Philip J.
    • Journal of computational fluids engineering
    • /
    • v.13 no.3
    • /
    • pp.69-78
    • /
    • 2008
  • The high-order numerical method based on the adaptive mesh refinement(AMR) on the quadrilateral unstructured grids has been developed in this paper. This adaptive-grid method, originally developed with MUSCL-TVD scheme, is now extended to the WENO (weighted essentially no-oscillatory) scheme with the Runge-Kutta time integration of fifth order in spatial and temporal accuracy. The multidimensional interpolation was studied in the preliminary research, which allows us to maintain the same order of accuracy for the computation of numerical flux between two adjacent cells of different levels. Some standard benchmark tests are done to validate this method for checking the overall capacity and efficiency of the present adaptive-grid technique.

UNSTEADY SUPERSONIC INLET DIFFUSER FLOWS WITH SINUSOIDAL PRESSURE OSCILLATIONS

  • Jong Yun Oh
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.107-116
    • /
    • 1996
  • Numerical simulations have been conducted to characterize unsteady flow structures in an axisymmetric supersonic inlet diffuser with sinusoidal pressure oscillations at the diffuser exit. The formulation is based on the unsteady Navier-Stokes equations and turbulence closure is achieved using a two-layer model with a too-Reynolds-number scheme for the near-wall treatment. The governing equations are formulated in an integral form, and are discretized by the four-stage Runge-Kutta scheme for temporal terms and the Harten-Yee upwind TVD scheme for convective terms. Results indicated that the inlet shock characteristics are significantly modified by acoustic oscillations originating from the combustor. The characteristics of shock/boundarv-layer interactions (such as the size of separation bubble, terminal shock shape, and vorticity intensity) are also greatly iufluenced by the shock oscillation due to acoustic waves.

  • PDF

Numerical Analysis of Transonic Laminar Flow in Turbomachinery Using Finite Volume Method(I) Cascade Flow Analysis (유한체적법을 이용한 터보기계 회전차내부의 천이음속.층류 유동해석 (I) 익렬 유동해석)

  • 조강래;오종식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.2
    • /
    • pp.445-451
    • /
    • 1993
  • For the calculation of transonic laminar flow fields in cascades of turbomachinery, a finite volume method employing Jameson's Runge-Kutta integration scheme as a basic algorithm is presented. The cell-vertex scheme introducing half-spacing mesh cells is developed. For the velocity gradients in the stress terms the integration with divergence theorem is used for the average concept. Some numerical results show good agreement with experimental data.

Calculation of Rotor-Stator Interactions Using a Low Reynolds Number Turbulence Model (저레이놀즈수 난류모델을 사용한 정익-동익 상호작용 해석)

  • Choi, Chang Ho;Yoo, Jung Yul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.10
    • /
    • pp.1229-1239
    • /
    • 1999
  • A computational study on unsteady compressible flows has been performed by adopting a low Reynolds number $k-{\omega}$ turbulence model in conjunction with dual time stepping scheme. An explicit four-stage Runge-Kutta scheme for the Navier-Stokes equations and an approximate factorization scheme for the $k-{\omega}$ turbulence model equations are used. Computational results obtained for blade surface pressure distributions in the process of rotor-stator interaction in a turbine stage are in good agreement with extant experimental data. The effects of the wake from the stator on the boundary-layer transition over the rotor blade surface are discussed by showing that high intensity turbulence of the stator wake induces an early transition.

Highly accurate family of time integration method

  • Rezaiee-Pajand, Mohammad;Esfehani, S.A.H.;Karimi-Rad, Mahdi
    • Structural Engineering and Mechanics
    • /
    • v.67 no.6
    • /
    • pp.603-616
    • /
    • 2018
  • In this study, the acceleration vector in each time step is assumed to be a mth order time polynomial. By using the initial conditions, satisfying the equation of motion at both ends of the time step and minimizing the square of the residual vector, the m+3 unknown coefficients are determined. The order of accuracy for this approach is m+1, and it has a very low dispersion error. Moreover, the period error of the new technique is almost zero, and it is considerably smaller than the members of the Newmark method. The proposed scheme has an appropriate domain of stability, which is greater than that of the central difference and linear acceleration techniques. The numerical tests highlight the improved performance of the new algorithm over the fourth-order Runge-Kutta, central difference, linear and average acceleration methods.