• 제목/요약/키워드: Runge-Kutta

검색결과 595건 처리시간 0.026초

Transient Response of Head Slider with the Head Geometry Change in Magnetic Storage Devices

  • Mongkolwongrojn, M.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.906-909
    • /
    • 2005
  • In this study, the dynamic flying characteristics of the worn head sliders are investigated theoretically due to the change in head geometry caused by head and disk contact. The film shapes can be approximated as taper- truncated cycloidal-flat film. Two-dimensional time dependent modified Reynolds equation included molecular slip effect are formulated with neglected the roughness effect. The motion of head slider was assumed to have two degree of freedom in this work. Finite difference approximation with Newton Raphson iterative technique and the fourth order Runge-Kutta method were implemented to obtain the transient response of the slider head with various change in head geometry numerically and compared with the transient response of the IBM3380 type head slider. The simulation results show the film shape has affects significantly on the static and dynamic characteristic of slider head in magnetic storage systems.

  • PDF

원호형 곡선보의 면외 자유진동에 관한 수치해석적 연구 (Out of Plane Free Vibrations of Circular Curved Beams)

  • 이병구;오상진
    • 전산구조공학
    • /
    • 제9권1호
    • /
    • pp.133-139
    • /
    • 1996
  • 이 논문은 원호형 곡선보의 면외 자유진동에 관한 연구이다. 곡선보 요소의 동적 평형방정식에 Timoshenko 이론을 적용하여 원호형 곡선보의 자유진동을 지배하는 상미분방정식을 유도하고 이를 수치해석하여 고유진동수를 산출할 수 있는 개략해법 중 하나인 수치해석기법을 개발하였다. 수치해석기법에서 미분방정식의 수치적분은 Runge-Kutta method를 이용하였고, 고유진동수의 결정은 Regular-Falsi method를 이용하였다. 실제 수치해석예에서는 회전-회전보, 고정-고정보에 대하여 시행하고 고유진동수에 미치는 무차원 변수들의 영향을 고찰하였다.

  • PDF

HIGHER ORDER FULLY DISCRETE SCHEME COMBINED WITH $H^1$-GALERKIN MIXED FINITE ELEMENT METHOD FOR SEMILINEAR REACTION-DIFFUSION EQUATIONS

  • S. Arul Veda Manickam;Moudgalya, Nannan-K.;Pani, Amiya-K.
    • Journal of applied mathematics & informatics
    • /
    • 제15권1_2호
    • /
    • pp.1-28
    • /
    • 2004
  • We first apply a first order splitting to a semilinear reaction-diffusion equation and then discretize the resulting system by an $H^1$-Galerkin mixed finite element method in space. This semidiscrete method yields a system of differential algebraic equations (DAEs) of index one. A priori error estimates for semidiscrete scheme are derived for both differ-ential as well as algebraic components. For fully discretization, an implicit Runge-Kutta (IRK) methods is applied to the temporal direction and the error estimates are discussed for both components. Finally, we conclude the paper with a numerical example.

HIGHER ORDER OF FULLY DISCREATE SOLUTION FOR PARABOLIC PROBLEM IN $L_{\infty}$

  • Lee, H.Y.;Lee, J.R.
    • Journal of applied mathematics & informatics
    • /
    • 제4권1호
    • /
    • pp.17-30
    • /
    • 1997
  • In this work we approximate the solution of initialboun-dary value problem using a Galerkin-finite element method for the spatial discretization and Implicit Runge-Kutta method for the spatial discretization and implicit Runge-Kutta methods for the time stepping. To deal with the nonlinear term f(x, t, u), we introduce the well-known extrapolation sheme which was used widely to prove the convergence in $L_2$-norm. We present computational results showing that the optimal order of convergence arising under $L_2$-norm will be preserved in $L_{\infty}$-norm.

캔틸레버 보의 과대처짐 해석 (Numerical Analysis of Large Deflections of Cantilever Beams)

  • 이병구
    • 대한토목학회논문집
    • /
    • 제10권1호
    • /
    • pp.1-7
    • /
    • 1990
  • 이 논문은 자유단에 집중하중과 만재 등분포하중이 작용하는 캔틸레버 보의 과대처짐을 해석한 연구이다. 과대처짐을 해석하기 위하여 처짐곡선의 Bernoulli-Euler 미분방정식을 이용하였고, 이 미분방정식을 Runge Kutta method와 Regula Falsi method를 이용하여 수치해석할 수 있는 기법을 개발하였다. 수치해석의 결과로 하중과 자유단의 수평처짐, 수직처짐 및 회전각과의 관계를 무차원화하여 도시하였고 또한 몇 개의 전형적인 과대처짐곡선을 무차원화하여 도시하였다.

  • PDF

공기압 실린더의 쿠션특성에 관한 모델링 및 컴퓨터 시뮬레이션 (Computer Simulation and Modeling of Cushioning Pneumatic Cylinder)

  • 이상천
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제23권6호
    • /
    • pp.794-805
    • /
    • 1999
  • Pneumatic cushioning cylinders are commonly employed for vibration and shock control. A mathematical simulation model of a double acting pneumatic cushioning cylinder designed to absorb shock loads is presented which is based on the following assumptions; ideal equation of state isentropic flow through a port conservation of mass polytropic thermodynamics single degree of freedom piston dynamics and energy equivalent linear damping. These differential equation can be solved through numerical integration using the fourth order Runge-Kutta method. An experimental study was conducted to validate the results obtained by the numerical integra-tion technique. Simulated results show good agreement with experimental data. The computer simulation model presented here has been extremely useful not only in understanding the has been extremely useful not only in understanding the basic cushioning but also in evaluating different designs.

  • PDF

확률적 비선형 동적계의 해석에 관한 연구 (A Study on the Analysis of Stochastic Nonlinear Dynamic System)

  • 남성현;김호룡
    • 대한기계학회논문집
    • /
    • 제19권3호
    • /
    • pp.697-704
    • /
    • 1995
  • The dynamic characteristics of a system can be critically influenced by system uncertainty, so the dynamic system must be analyzed stochastically in consideration of system uncertainty. This study presents the stochastic model of a nonlinear dynamic system with uncertain parameters under nonstationary stochastic inputs. And this stochastic system is analyzed by a new stochastic process closure method and moment equation method. The first moment equation is numerically evaluated by Runge-Kutta method and the second moment equation is numerically evaluated by stochastic process closure method, 4th cumulant neglect closure method and Runge-Kutta method. But the first and the second moment equations are coupled each other, so this equations are approximately evaluated by a iterative method. Finally the accuracy of the present method is verified by Monte Carlo simulation.

크레인 구동부의 Lateral Motion에 관한 연구 (The Study on Lateral Motion of Crane Driving Mechanism)

  • 이형우;이성섭;박찬훈;박경택;이만형
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.703-707
    • /
    • 2000
  • This paper studied on the lateral motion of the gantry crane which is used for the automated container terminal. Though several problems are occurred in driving of gantry crane, they are solved by the motion by the operator. But, if the gantry crane is unmanned, it is automatically controlled without any human operation. Especially, the collision between wheel-flange and rail is a very critical problem in driving of unmanned gantry crane. To bring a solution to these problems, the lateral and yaw dynamic equations of the driving mechanism of gantry crane are derived. And this study used PD(Proportional-Derivative) Controller to control the lateral displacement and the yaw angle. The simulation result of the driving mechanism using the Runge-Kutta method is presented in this paper.

  • PDF

일정체적 캔틸레버 기둥의 좌굴하중 및 후좌굴 거동 (Buckling Loads and Post-Buckling Behavio of Cantilever Column with Constant Volume)

  • 이승우;이태은;김권식;이병구
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2006년도 정기 학술대회 논문집
    • /
    • pp.935-940
    • /
    • 2006
  • Numerical methods are developed for solving the elastica and buckling load of cantilever column with constant volume, subjected to a compressive end load. The linear, parabolic and sinusoidal tapers with the regular polygon cross-sections are considered, whose material volume and span length are always held constant. The differential equations governing the elastica of buckled column are derived. The Runge-Kutta method is used to integrate the differential equations, and the Regula-Falsi method is used to determine the horizontal deflection at free end and the buckling load, respectively. The numerical methods developed herein for computing the elastica and the buckling loads of the columns are found to be efficient and reliable.

  • PDF

자연 연소중인 궐련내에서 일어나는 물리화학적 현상의 시뮬레이션 (Simulation of Physical Chemistry Phenomena Inside a Naturally Smoldering Cigarette)

  • 오인혁;김기환;정경락
    • 한국연초학회지
    • /
    • 제20권1호
    • /
    • pp.87-94
    • /
    • 1998
  • After we made the computer source code with mathematical model of Muramatsu et al. that was expressed by the set of simultaneous first-order ordinary differential equations in evaporation-pyrolysis zone of cigarette, we simulated the distribution profiles of temperature and density of flue-cured tobacco. Those equations were solved numerically with the Runge-Kutta-Gill algorithm assuming step size of 0.025mm by Muramatsu at at,, but in this study the advanced algorithm of Runge-Kutta 4th Order assuming step size of 0.0005mm. The initial conditions and physical parameters of Muramatsu et at. were used for solving them. The calculated values corresponded well with results of Muramatsu et al., especially the gradient of the temperature profile increased with smoldering speed and the thickness of the evaporation-pyrolysis zone decreased with increasing of smoldering speed. On the other hand, the temperature gradient decreased with increasing of the effective thermal-conductivity value and the thickness of the evaporation-pyrolysis zone increased with the effective thermal-conductivity value.

  • PDF