• 제목/요약/키워드: Ruminal Microbial Fermentation

검색결과 129건 처리시간 0.026초

Ruminal ciliates as modulators of the rumen microbiome

  • Tansol Park
    • Animal Bioscience
    • /
    • 제37권2_spc호
    • /
    • pp.385-395
    • /
    • 2024
  • Ruminal ciliates are a fundamental constituent within the rumen microbiome of ruminant animals. The complex interactions between ruminal ciliates and other microbial guilds within the rumen ecosystems are of paramount importance for facilitating the digestion and fermentation processes of ingested feed components. This review underscores the significance of ruminal ciliates by exploring their impact on key factors, such as methane production, nitrogen utilization efficiency, feed efficiency, and other animal performance measurements. Various methods are employed in the study of ruminal ciliates including culture techniques and molecular approaches. This review highlights the pressing need for further investigations to discern the distinct roles of various ciliate species, particularly relating to methane mitigation and the enhancement of nitrogen utilization efficiency. The promotion of establishing robust reference databases tailored specifically to ruminal ciliates is encouraged, alongside the utilization of genomics and transcriptomics that can highlight their functional contributions to the rumen microbiome. Collectively, the progressive advancement in knowledge concerning ruminal ciliates and their inherent biological significance will be helpful in the pursuit of optimizing rumen functionality and refining animal production outcomes.

Enhancing Butyrate Production, Ruminal Fermentation and Microbial Population through Supplementation with Clostridium saccharobutylicum

  • Miguel, Michelle A.;Lee, Sung Sill;Mamuad, Lovelia L.;Choi, Yeon Jae;Jeong, Chang Dae;Son, Arang;Cho, Kwang Keun;Kim, Eun Tae;Kim, Sang Bum;Lee, Sang Suk
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권7호
    • /
    • pp.1083-1095
    • /
    • 2019
  • Butyrate is known to play a significant role in energy metabolism and regulating genomic activities that influence rumen nutrition utilization and function. Thus, this study investigated the effects of an isolated butyrate-producing bacteria, Clostridium saccharobutylicum, in rumen butyrate production, fermentation parameters and microbial population in Holstein-Friesian cow. An isolated butyrate-producing bacterium from the ruminal fluid of a Holstein-Friesian cow was identified and characterized as Clostridium saccharobutylicum RNAL841125 using 16S rRNA gene sequencing and phylogenetic analyses. The bacterium was evaluated on its effects as supplement on in vitro rumen fermentation and microbial population. Supplementation with $10^6CFU/ml$ Clostridium saccharobutylicum increased (p < 0.05) microbial crude protein, butyrate and total volatile fatty acids concentration but had no significant effect on $NH_3-N$ at 24 h incubation. Butyrate and total VFA concentrations were higher (p < 0.05) in supplementation with $10^6CFU/ml$ Clostridium saccharobutylicum compared with control, with no differences observed for total gas production, $NH_3-N$ and propionate concentration. However, as the inclusion rate (CFU/ml) of C. saccharobutylicum was increased, reduction of rumen fermentation values was observed. Furthermore, butyrate-producing bacteria and Fibrobacter succinogenes population in the rumen increased in response with supplementation of C. saccharobutylicum, while no differences in the population in total bacteria, protozoa and fungi were observed among treatments. Overall, our study suggests that supplementation with $10^6CFU/ml$ C. saccharobutylicum has the potential to improve ruminal fermentation through increased concentrations of butyrate and total volatile fatty acid, and enhanced population of butyrate-producing bacteria and cellulolytic bacteria F. succinogenes.

Effects of different dietary ratio of metabolizable glucose and metabolizable protein on growth performance, rumen fermentation, blood biochemical indices and ruminal microbiota of 8 to 10-month-old dairy heifers

  • Sun, Jie;Xu, Jinhao;Ge, Rufang;Wang, Mengzhi;Yu, Lihuai;Wang, Hongrong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제31권8호
    • /
    • pp.1205-1212
    • /
    • 2018
  • Objective: The aim of this experiment was to evaluate the effects of different dietary ratio of metabolizable glucose (MG) to metabolizable protein (MP) on growth performance, blood metabolites, rumen fermentation parameters and the ruminal microbial community of 8 to 10-month-old heifers. Methods: A total of 24 Holstein heifers weighing an average of 282.90 kg (8 month of age) were randomly assigned to four groups of six. The heifers were fed one of four diets of different dietary MG/MP (0.97, 1.07, 1.13, and 1.26). Results: The results showed that the ratio of MG/MP affected the growth performance, blood metabolites, rumen fermentation parameters and the ruminal microbial community of heifers. The average daily gain of heifers was enhanced by increasing the ratio of MG/MP (p<0.05). The concentration of blood urea nitrogen, cholesterol, and low density lipoprotein cholesterol as well as the concentration of total volatile fatty acid in the rumen fluid of heifers decreased with the improvement in the ratio of dietary MG/MP (p<0.05). However, the relative amount of Ruminococcus albus and Butyrivibrio fibrisolvens in the rumen of heifers was increased significantly (p<0.05) when the dietary MG/MP increased. At the same time, with the improvement in dietary MG/MP, the amount of Fibrobacter succinogenes increased (p = 0.08). Conclusion: A diet with an optimal ratio (1.13) of MG/MP was beneficial for the improvement of growth, rumen fermentation, dietary protein and energy utilization of 8 to 10-month-old dairy heifers in this experiment.

Effects of Acarbose Addition on Ruminal Bacterial Microbiota, Lipopolysaccharide Levels and Fermentation Characteristics In vitro

  • Yin, Yu-Yang;Liu, Yu-Jie;Zhu, Wei-Yun;Mao, Sheng-Yong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제27권12호
    • /
    • pp.1726-1735
    • /
    • 2014
  • This study investigated the effects of acarbose addition on changes in ruminal fermentation characteristics and the composition of the ruminal bacterial community in vitro using batch cultures. Rumen fluid was collected from the rumens of three cannulated Holstein cattle fed forage ad libitum that was supplemented with 6 kg of concentrate. The batch cultures consisted of 8 mL of strained rumen fluid in 40 mL of an anaerobic buffer containing 0.49 g of corn grain, 0.21 g of soybean meal, 0.15 g of alfalfa and 0.15g of Leymus chinensis. Acarbose was added to incubation bottles to achieve final concentrations of 0.1, 0.2, and 0.4 mg/mL. After incubation for 24 h, the addition of acarbose linearly decreased (p<0.05) the total gas production and the concentrations of acetate, propionate, butyrate, total volatile fatty acids, lactate and lipopolysaccharide (LPS). It also linearly increased (p<0.05) the ratio of acetate to propionate, the concentrations of isovalerate, valerate and ammonia-nitrogen and the pH value compared with the control. Pyrosequencing of the 16S rRNA gene showed that the addition of acarbose decreased (p<0.05) the proportion of Firmicutes and Proteobacteria and increased (p<0.05) the percentage of Bacteroidetes, Fibrobacteres, and Synergistetes compared with the control. A principal coordinates analysis plot based on unweighted UniFrac values and molecular variance analysis revealed that the structure of the ruminal bacterial communities in the control was different to that of the ruminal microbiota in the acarbose group. In conclusion, acarbose addition can affect the composition of the ruminal microbial community and may be potentially useful for preventing the occurrence of ruminal acidosis and the accumulation of LPS in the rumen.

쑥(Artemisia sp.)의 가공방법이 면양의 소화율과 반추위내 발효특성에 미치는 영향 (Effect of Mugwort Processing Types on in vivo Digestibility and Ruminal Fermentation Characteristics in Sheep)

  • 김재황;고영두
    • Journal of Animal Science and Technology
    • /
    • 제47권3호
    • /
    • pp.409-418
    • /
    • 2005
  • This study was conducted to examine the nutrient digestibility and ruminal fermentation characteristics in sheep fed dried mugwort and mugwort silage for 5% levels of rice straw in the basal diet, and mugwort pellet for 5% levels of concentrate in the basal diet. For the experiment, they were given a basal diet containing of rice straw and concentrate mixed at a 3: 7 ratio (DM basis). The treatments were designed as a 4 ${\times}$ 4 Latin square design with four sheep (50.2 kg body weight). The digestibility of crude protein was increased (p < 0.05) to 4.6 - 6.2 % in sheep fed mugwort silage treatments (60.23 %) compared with those of control (54.08 %) and dried mugwort treatment (55.67 %). That of ether extract was iicreased (p < 0.05) to 4.8 - 8.8 % in sheep fed mugwort silage treatments (80.22 %) compared with those of control (71.47 %) and dried mugwort treatment (75.46 %). In the dry matter intake, mugwort silage treatment (904.44 g) was the hightest and mugwort pellet treatment, dried mugwort treatment and control were 810.66 g, 780.66 g and 742.18 g, respectively. The ruminal pH in all treatments were rapidly decreased (p < 0.05) at 0.5 and 1 hour after feeding and slowly increased at 2, 4 and 8 hours after feeding, especially mugwort silage treatment. The ammonia nitrogen concentrations were the highest (p < 0.05) in sheep fed mugwort silage treatment (11.24 - 12.05mg / 100 rnz) at 0.5 and 2 hours after feeding. The ruminal concentrations of acetic acid (6.06 mmol /100 $m\ell$) and propionic acid (2.35 mmol/ 100 mz) were an increased (p < 0.05) at the mugwort silage treatments at 1 and 2 hours after feeding. Purine derivatives out put (13.41 mmol / d) and microbial protein production (11.61 mmol / d) were increased (p < 0.05) compared with those of control (5.42 and 4.93 mmol / d).

Effects of dietary cation and anion difference on eating, ruminal function and plasma leptin in goats under tropical condition

  • Nguyen, Thiet;Chanpongsang, Somchai;Chaiyabutr, Narongsak;Thammacharoen, Sumpun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제33권6호
    • /
    • pp.941-948
    • /
    • 2020
  • Objective: This study was carried out to determine the effects of elevated dietary cation and anion difference (DCAD) on dry matter intake (DMI) and ruminal fermentation pattern in lactating dairy goats under tropical conditions. Methods: Ten dairy goats were divided into two groups of five animals each. The groups received diets at different DCAD levels, either a control diet (22.81 mEq/100 g dry matter [DM], DCAD-23) or a DCAD-39 diet (39.08 mEq/100 g DM, DCAD-39). After parturition, DMI and water intake were recorded daily. Ruminal fluid and urine were collected, and nutrient digestibility measurements were carried out at 8th weeks postpartum (PP-8). Blood samples were collected at PP-4 and PP-8 to measure plasma leptin. Results: Dry matter intake/body weight (DMI/BW) at PP-8 of the animals fed the DCAD-39 diet was significantly higher than those fed with DCAD-23 diet (p<0.05). Animals fed with DCAD-39 consumed more water than those fed DCAD-23 over 24 h, particularly at night (p<0.05). Ruminal pH, acetate concentration, and urinary allantoin excretion increased with the DCAD-39 diet, whereas ruminal butyrate concentration was lower with the DCAD-39 diet. On the other hand, other ruminal parameters, such as total volatile fatty acid concentration, propionate molar proportion and acetate/propionate average ratio, were not affected by increased DCAD supplementation. Apparent digestibility was improved by increased DCAD supplementation. Plasma leptin concentration was higher with DCAD supplementation. Conclusion: When feeding goats with DCAD-39 under tropical conditions, an increase in DMI was associated with improved apparent digestibility of nutrients, ruminal fermentation and microbial protein synthesis. An increase in plasma leptin concentration could not explain the effect of high DCAD on DMI.

Use of Nitrate-nitrogen as a Sole Dietary Nitrogen Source to Inhibit Ruminal Methanogenesis and to Improve Microbial Nitrogen Synthesis In vitro

  • Guo, W.S.;Schaefer, D.M.;Guo, X.X.;Ren, L.P.;Meng, Qingxiang
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제22권4호
    • /
    • pp.542-549
    • /
    • 2009
  • An in vitro study was conducted to determine the effect of nitrate-nitrogen used as a sole dietary nitrogen source on ruminal fermentation characteristics and microbial nitrogen (MN) synthesis. Three treatment diets were formulated with different nitrogen sources to contain 13% CP and termed i) nitrate-N diet (NND), ii) urea-N diet (UND), used as negative control, and iii) tryptone-N diet (TND), used as positive control. The results of 24-h incubations showed that nitrate-N disappeared to background concentrations and was not detectable in microbial cells. The NND treatment decreased net $CH_4$ production, but also decreased net $CO_2$ production and increased net $H_2$ production. Total VFA concentration was lower (p<0.05) for NND than TND. Suppression of $CO_2$ production and total VFA concentration may be linked to increased concentration of $H_2$. The MN synthesis was greater (p<0.001) for NND than UND or TND (5.74 vs. 3.31 or 3.34 mg/40 ml, respectively). Nitrate addition diminished methane production as expected, but also increased MN synthesis.

Effects of Condensed Tannins in Mao (Antidesma thwaitesianum Muell. Arg.) Seed Meal on Rumen Fermentation Characteristics and Nitrogen Utilization in Goats

  • Gunun, P.;Wanapat, M.;Gunun, N.;Cherdthong, A.;Sirilaophaisan, S.;Kaewwongsa, W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제29권8호
    • /
    • pp.1111-1119
    • /
    • 2016
  • Mao seed is a by-product of the wine and juice industry, which could be used in animal nutrition. The current study was designed to determine the effect of supplementation of mao (Antidesma thwaitesianum Muell. Arg.) seed meal (MOSM) containing condensed tannins (CT) on rumen fermentation, nitrogen (N) utilization and microbial protein synthesis in goats. Four crossbred (Thai Native${\times}$Anglo Nubian) goats with initial body weight (BW) $20{\pm}2kg$ were randomly assigned to a $4{\times}4$ Latin square design. The four dietary treatments were MOSM supplementation at 0%, 0.8%, 1.6%, and 2.4% of total dry matter (DM) intake, respectively. During the experimental periods, all goats were fed a diet containing roughage to concentrate ratio of 60:40 at 3.0% BW/d and pangola grass hay was used as a roughage source. Results showed that supplementation with MOSM did not affect feed intake, nutrient intakes and apparent nutrient digestibility (p>0.05). In addition, ruminal pH and ammonia nitrogen ($NH_3$-N) were not influenced by MOSM supplementation, whilst blood urea nitrogen was decreased quadraticly (p<0.05) in goats supplemented with MOSM at 2.4% of total DM intake. Propionate was increased linearly with MOSM supplementation, whereas acetate and butyrate were remained the same. Moreover, estimated ruminal methane ($CH_4$) was decreased linearly (p<0.05) when goats were fed with MOSM at 1.6% and 2.4% of total DM intake. Numbers of bacteria and protozoa were similar among treatments (p>0.05). There were linear decreases in urinary N (p<0.01) and total N excretion (p<0.01) by MOSM supplementation. Furthermore, N retention was increased linearly (p<0.05) when goats were fed with MOSM supplementation at 1.6% and 2.4% of total DM intake. Microbial protein synthesis were not significantly different among treatments (p>0.05). From the current study, it can be concluded that supplementation of MOSM at 1.6% to 2.4% of total DM intake can be used to modify ruminal fermentation, especially propionate and N utilization in goats, without affecting the nutrient digestibility, microbial populations and microbial protein synthesis.

The role of rumen microbiota in enteric methane mitigation for sustainable ruminant production

  • Takumi Shinkai;Shuhei Takizawa;Miho Fujimori;Makoto Mitsumori
    • Animal Bioscience
    • /
    • 제37권2_spc호
    • /
    • pp.360-369
    • /
    • 2024
  • Ruminal methane production functions as the main sink for metabolic hydrogen generated through rumen fermentation and is recognized as a considerable source of greenhouse gas emissions. Methane production is a complex trait affected by dry matter intake, feed composition, rumen microbiota and their fermentation, lactation stage, host genetics, and environmental factors. Various mitigation approaches have been proposed. Because individual ruminants exhibit different methane conversion efficiencies, the microbial characteristics of low-methane-emitting animals can be essential for successful rumen manipulation and environment-friendly methane mitigation. Several bacterial species, including Sharpea, uncharacterized Succinivibrionaceae, and certain Prevotella phylotypes have been listed as key players in low-methane-emitting sheep and cows. The functional characteristics of the unclassified bacteria remain unclear, as they are yet to be cultured. Here, we review ruminal methane production and mitigation strategies, focusing on rumen fermentation and the functional role of rumen microbiota, and describe the phylogenetic and physiological characteristics of a novel Prevotella species recently isolated from low methane-emitting and high propionate-producing cows. This review may help to provide a better understanding of the ruminal digestion process and rumen function to identify holistic and environmentally friendly methane mitigation approaches for sustainable ruminant production.

Ruminal pH pattern, fermentation characteristics and related bacteria in response to dietary live yeast (Saccharomyces cerevisiae) supplementation in beef cattle

  • Zhang, Xiangfei;Dong, Xianwen;Wanapat, Metha;Shah, Ali Mujtaba;Luo, Xiaolin;Peng, Quanhui;Kang, Kun;Hu, Rui;Guan, Jiuqiang;Wang, Zhisheng
    • Animal Bioscience
    • /
    • 제35권2호
    • /
    • pp.184-195
    • /
    • 2022
  • Objective: In this study we aimed to evaluate the effect of dietary live yeast supplementation on ruminal pH pattern, fermentation characteristics and associated bacteria in beef cattle. Methods: This work comprised of in vitro and in vivo experiments. In vitro fermentation was conducted by incubating 0%, 0.05%, 0.075%, 0.1%, 0.125%, and 0.15% active dried yeast (Saccharomyces cerevisiae, ADY) with total mixed ration substrate to determine its dose effect. According to in vitro results, 0.1% ADY inclusion level was assigned in in vivo study for continuously monitoring ruminal fermentation characteristics and microbes. Six ruminally cannulated steers were randomly assigned to 2 treatments (Control and ADY supplementation) as two-period crossover design (30-day). Blood samples were harvested before-feeding and rumen fluid was sampled at 0, 3, 6, 9, and 12 h post-feeding on 30 d. Results: After 24 h in vitro fermentation, pH and gas production were increased at 0.1% ADY where ammonia nitrogen and microbial crude protein also displayed lowest and peak values, respectively. Acetate, butyrate and total volatile fatty acids concentrations heightened with increasing ADY doses and plateaued at high levels, while acetate to propionate ratio was decreased accordingly. In in vivo study, ruminal pH was increased with ADY supplementation that also elevated acetate and propionate. Conversely, ADY reduced lactate level by dampening Streptococcus bovis and inducing greater Selenomonas ruminantium and Megasphaera elsdenii populations involved in lactate utilization. The serum urea nitrogen decreased, whereas glucose, albumin and total protein concentrations were increased with ADY supplementation. Conclusion: The results demonstrated dietary ADY improved ruminal fermentation dose-dependently. The ruminal lactate reduction through modification of lactate metabolic bacteria could be an important reason for rumen pH stabilization induced by ADY. ADY supplementation offered a complementary probiotics strategy in improving gluconeogenesis and nitrogen metabolism of beef cattle, potentially resulted from optimized rumen pH and fermentation.