Woo, Yang Won;Lee, Chang Hyun;Rajaraman, Bharanidharan;Yeo, Joon Mo;Lee, Won Young;Kim, Do Hyung;Jang, Seon-Sik;Kim, Kyoung Hoon
Journal of The Korean Society of Grassland and Forage Science
/
v.37
no.4
/
pp.315-321
/
2017
The present experiment was designed to investigate the effects of extruded linseed supplementation on methane production in Holstein steers. Four Holstein steers fitted with permanent cannulas were assigned to two dietary treatments in a duplicated $2{\times}2$ Latin square design: a control diet consisting of tall fescue straw (65%) and concentrate (35%), and a treatment diet supplemented with 3.8% extruded linseed by replacing a part of ingredients in the concentrate of the control diet. The concentrates of the control and the treatment diet were isoenergetic and isonitrogenous. Extruded linseed supplementation did not affect dry matter intake but significantly (P<0.05) increased the intake of lipid. Rumen pH was significantly (P<0.05) lower for control than for treatment. Although there was no significant difference between treatments, the concentration of total VFA in control was 21% higher than in treatment. The concentrations of acetic acid, propionic acid and butyric acid were not different between treatments. Extruded linseed supplementation significantly (P<0.05) reduced methane output(g/d) and emission factor. Methane conversion rate was lower for treatment than for control but no significant difference was found. The results of the present study showed that extruded linseed supplementation in the diet of Holstein steers could reduce methane output.
This study was conducted to investigate the effects of brown seaweed waste (BSW) fermented with DS-01 microbe on in vitro rumen microbial fermentation. In in vitro trial, three different diets supplemented with 2%, 4%, 6% BSW fermented with DS-01 either for one month or two months was tested at 3 h, 6 h, 9 h, 12 h, and 24 h incubation. The chemical composition (CP, EE, CF, and ash) between brown seaweed waste (BSW) and fermented BSW (FBSW) were not different. The contamination of pathogenic microbes was not detected in FBSW. The pH value tended to be higher with 6% level of supplementation of FBSW for one month than other treatments. The pH at 24 h was significantly higher in FBSW than that of treatments without FBSW (p<0.05). In FBSW for two months, the pH value in 6% FBSW at 3 h in vitro fermentation tended to be higher than 2% or 4% FBSW treatments (p=0.0540), but there were no differences in other fermentation times. Although the concentration of $NH_3$-N of BSW fermented for one month was higher than control at 3 h (p<0.05), the volatile fatty acid values were significantly increased in 4 and 6% FBSW fermented for one month at 6 h incubation (p<0.05). In BSW fermented for two months, the volatile fatty acid values were significantly decreased in 6% treatment at 9 h (p<0.05). As a result of in vitro trial, it was recommended that the 2~4% supplementation level of brown seaweed waste fermented with DS-01 microbe for two months could be utilized for in vivo trial in ruminants.
This experiment was conducted to investigate the effect of feeding monensin on the growth performance and ruminal fermentation characteristics of Han-Woo cattle. Seventy two uncastrated Han-Woo male cattle(BW 267 kg) were randomly allotted to 0, 22, and 33 ppm monensin treatments, three replicates per treatment and eight heads per replicate. Animals were kept in an open barn for an 140-d feeding trial, Concentrates containing different levels of monensin and rice straw cut in 15cm length were fed ad libitum separately. The results obtained from this study were summarized as follows. 1. No significant difference was found in daily gain by monensin feeding. 2. Monensin did not affect the total feed (concentrate + roughage) intake: however, as the monensin level increased, the total feed intake tended to decrease, resulting in 5 % reduction in 33 ppm monensin treatment. 3. Although no significant difference was found among three treatments, 22 and 33 ppm monensin improved the feed efficiency(total feed/gain) by 5.2 % and 5.1 %, respectively, as compared to the 0 ppm monensin treatment. 4. Monensin did not affect the concentrations of ruminal total VFA and acetic acid consistently. Although not significant, monensin feeding of 22 and 33 ppm caused marked increase in ruminal propionic acid concentration, 13.8 % and 19.3 %, respectively. Ruminal butyric acid concentration decreased as monensin level increased. Monensin feeding, regardless of level, decreased the A/P ratio by 12.5 %. In conclusiuon, monensin feeding increased the propionic acid concentration, and decreased the butyric acid concentration and A/P ratio in the rumen. Animals fed monensin consumed less feed, causing the improvement in feed efficiency. Thus, monensin appeared to be a useful feed additive, directing the rumen fermentation in a more productive way. Feed efficiency improved similarly both in 22 and 33 ppm monensin treatments, indicating that 22 ppm might be good enough rather than the 33 ppm monensin level.
This study was conducted to investigate effects of the brown seaweed residues supplementation on in vitro fermentation, and milk yield and milk composition of dairy cows. Therefore, two experiments consisting of an in vitro and an in vivo growth trial were used. In in vitro experiment, brown seaweed residues(BSR) was supplemented in basal diet with 0, 1, 2 and 4% respectively, and incubated for 3, 6, 9, 12, and 24 h. The pH value, ammonia-N and VFA were investigated. The pH value tended to increase with increasing BSR during the incubation. Particularly, pH was significantly higher in BSR treatments compared with control at 9 h(p < 0.05). While, ammonia-N concentration was not significantly different across treatments during the whole incubation. BSR supplementation did not affect total VFA production, but acetate was linearly increased in BSR treatments compared with control at 12 h(p < 0.05), and its concentration was highest(92.70 mM) in 4% BSR among treatments. The concentration of iso-butyrate tended to increase in BSR treatments in comparison to control during the incubation. In addition, the concentration of iso-valerate was higher in BSR treatments compared with control at 12 and 24 h. In growth trial, BSR was added(800 g/d/animaI) to diets of dairy cow. Dry matter intake was not affected by BSR supplementation, but daily milk yield(kg) significantly increased in BSR treatment compared with control(p < 0.05). However, milk composition(%) and milk yield(kg) were not significantly different between treatments. Milk fat(% and kg/d) tended to slightly decrease in BSR treatment compared with control(3.59% and 1.06 kg/d vs. 3.32% and 1.01 kg/d), The contents of C16:0 and C20:4 in milk significantly increased in BSR treatment compared with control reflecting from dietary fatty acid composition. The content of C18:0 in milk which is end product of biohydrogenation of CI8 unsaturated fatty acids in the rumen significantly increased in BSR treatment compared with control(p < 0.05). C18:2 content in milk tended to decrease, but tended to increase trans-II C18:l and CLA contents in milk in BSR treatment compared with control. In conclusion, it could be summarized that BSR may stabilize rumen pH, and it could improve milk yield and CIA content in milk with more than 4% of diet. Therefore, BSR could be beneficially used in dairy diets as a feed additive.
Journal of The Korean Society of Grassland and Forage Science
/
v.30
no.4
/
pp.343-354
/
2010
The present study was conducted to examine the fermentation characteristics and effective degradability (ED) in the rumen, and whole tract digestibility of whole crop silage based TMR in comparison with conventional separate feeding of concentrate and roughage. Three ruminally fistulated non-lactating Holstein cattle were used in a 3 $\times$ 3 Latin square design. The cattle were fed 8kg of whole crop barley silage based TMR (BS-TMR) or 8kg (DM basis) of whole crop rye silage based TMR (RS-TMR) twice (08:00 and 18:00) daily in an equal amount. The cattle were also fed concentrate (5.6kg) and rice straw (1.4kg) seperately (DM basis, Control) twice daily in an equal amount. The both silages were included in TMR at 20% level (as fed basis). pH in the rumen fluid was not influenced by the diets but was slightly higher from TMR than from control. No difference was found in ammonia-N concentration between diets. Total VFA concentration was relatively increased in the cattle fed RS-TMR to the other diets up to 6h post feeding. The proportion of acetate was increased in the TMR feeding at right before feeding (0 h, p<0.005) and 9 h (p<0.048) post feeding compared with control. Propionate proportion was increased (p<0.046) in both TMRs while butyrate proportion was increased (p<0.029) at 1h post feeding compared to other diets. Effective degradability (ED) of DM and CP of RS-TMR was relatively increased to other diets, and EDNDF of both TMRs was higher than that of control diet due to the increased parameters b (p<0.039) and c (p<0.006) in TMR treatments. Whole track digestibility of most components in the TMRs was slightly increased compared to that in control diet, and RS-TMR had a tendency to be increased whole track digestibility except for NDF compared to BS-TMR. Based on the results observed from the present study, nutrient availability of whole crop silage based TMR looked slightly better than conventional separate feeding of concentrate and rice straw, mainly due to the improved stabilization of fermentation in the rumen and increased NDF digestibility of whole crop silage in TMR.
Li, X.Z.;Choi, S.H.;Jin, G.L.;Yan, C.G.;Long, R.J.;Liang, C.Y.;Song, Man K.
Asian-Australasian Journal of Animal Sciences
/
v.22
no.6
/
pp.819-826
/
2009
An in vitro study was conducted to investigate the effect of malate or fumarate on fermentation characteristics, and production of conjugated linoleic acid (CLA) and methane ($CH_4$) by rumen microbes when incubated with linolenic acid (${\alpha}-C_{18:3}$). Sixty milligrams of ${\alpha}-C_{18:3}$ alone (LNA), or ${\alpha}-C_{18:3}$ with 24 mM malic acid (M-LNA) or ${\alpha}-C_{18:3}$ with 24 mM fumaric acid (F-LNA) were added to the 150 ml culture solution consisting of 75 ml strained rumen fluid and 75ml McDougall's artificial saliva. Culture solution for incubation was also made without malate, fumarate and ${\alpha}-C_{18:3}$ (Control). Two grams of feed consisting of 70% concentrate and 30% ground alfalfa (DM basis) were also added to the culture solution of each treatment. In vitro incubation was made anaerobically in a shaking incubator up to 12 h at $39^{\circ}C$. Supplementation of malate (M-LNA) or fumarate (F-LNA) increased pH at 6 h (p<0.01) and 12 h (p<0.001) incubation times compared to control and linolenic acid (LNA) treatments. Both malate and fumarate did not influence the ammonia-N concentration. Concentration of total VFA in culture solution was higher for M-LNA and F-LNA supplementation than for control and LNA treatments from 6 h (p<0.040) to 12 h (p<0.027) incubation times, but was not different between malate and fumarate for all incubation times. Molar proportion of $C_3$ was increased by F-LNA and M-LNA supplementation from 6 h (p<0.0001) to 12 h (p<0.004) incubation times compared to control and LNA treatments. No differences in $C_{3}$ proportion, however, were observed between M-LNA and F-LNA treatments. Accumulated total gas production for 12h incubation was increased (p<0.0002) by M-LNA or F-LNA compared to control or LNA treatment. Accumulated $CH_4$ production for 12 h incubation, however, was greatly reduced (p<0.0002) by supplementing malate or fumarate compared to the control, and its production from M-LNA or F-LNA treatment was smaller than that from LNA treatment. Methane production from LNA, M-LNA or F-LNA treatment was steadily lower (p<0.01 - p<0.001) from 3 h incubation time than that from the control, and was also lower for M-LNA or F-LNA treatment at incubation times of 6 h (p<0.01) and 9 h (p<0.001) than for LNA treatment. Methane production from LNA, however, was reduced (p<0.01 - p<0.001) from 3 h to 9 h incubation times compared to the control. Both malate and fumarate increased concentration of trans11-$C_{18:1}$ from 3 h to 12 h incubation (p<0.01), cis9,trans11-CLA up to 6 h incubation (p<0.01 - p<0.01), trans10,cis12-CLA at 3 h (p<0.05) and 12 h (p<0.01), and total CLA for all incubation times (p<0.05) compared to corresponding values for the ${\alpha}-C_{18:3}$ supplemented treatment (LNA). In conclusion, malate and fumarate rechanneled the metabolic $H_2 pathway to production of propionate and CLA, and depressed the process of biohydrogenation and methane generation. Linolenic acid alone would also be one of the optimistic alternatives to suppress the $CH_4$ generation.
Journal of The Korean Society of Grassland and Forage Science
/
v.34
no.2
/
pp.129-140
/
2014
This study was performed to evaluate the effects of replacing basic total mixed ration (TMR) with fermented soybean curd, Artemisia princeps Pampanini cv. Sajabal, and spent coffee grounds by-product on rumen microbial fermentation in vitro. Soybean in the basic TMR diet (control) was replaced by the following 9 treatments (3 replicates): maximum amounts of soybean curd (SC); fermented SC (FSC); 3, 5, and 10% FSC + fermented A. princeps Pampanini cv. Sajabal (1:1, DM basis, FSCS); and 3, 5, 10% FSC + fermented coffee meal (1:1, DM basis, FSCC) of soybean. FSC, FSCS, and FSCC were fermented using Lactobacillus acidophilus ATCC 496, Lactobacillus fermentum ATCC 1493, Lactobacillus plantarum KCTC 1048, and Lactobacillus casei IFO 3533. Replacing dairy cow TMR with FSC treatment led to a pH value of 6 after 8 h of incubation-the lowest value measured (p<0.05), and FSCS and FSCC treatments were higher than SC and FSC treatment after 6 h (p<0.05). Gas production was higher in response to 3% FSC and FSCC treatments than the control after 4-10 h. Dry matter digestibility was increased 0-12 h after FSC treatment (p<0.05) and was the highest after 24 h of 10% FSCS treatment. $NH_3-N$ concentration was the lowest after 24 h of FSC treatment (p<0.05). Microbial protein content increased in response to treatments that had been fermented by the Lactobacillus spp. compared to control and SC treatments (p<0.05). The total concentration of volatile fatty acids (VFAs) was increased after 6-12 h of FSC treatment (p<0.05), while the highest acetate proportion was observed 24 h after 5% and 10% FSCS treatments. The FSC of propionate proportion was increased for 0-10 h compared with among treatments (p<0.05). The highest acetate in the propionate ration was observed after 12 h of SC treatment and the lowest with FSCS 3% treatment after 24 h. Methane ($CH_4$) emulsion was lower with A. princeps Pampanini cv. Sajabal and spent coffee grounds treatments than with the control, SC, and FSC treatments. These experiments were designed to replace the by-products of dairy cow TMR with SC, FSC, FSCS, and FSCC to improve TMR quality. Condensed tannins contained in FSCS and FSCC treatments, which reduced $CH_4$ emulsion in vitro, decreased rumen microbial fermentation during the early incubation time. Therefore, future experiments are required to develop a rumen continuous culture system and an in vivo test to optimize the percentages of FSC, FSCS, and FSCC in the TMR diet of the dairy cows.
Paengkoum, Pramote;Liang, J.B.;Jelan, Z.A.;Basery, M.
Asian-Australasian Journal of Animal Sciences
/
v.19
no.9
/
pp.1305-1313
/
2006
Five male dairy goats (Saanen), 4.6 month old with a body weight of 21.4 ($SD{\pm}1.6$) kg, were used to examine 5 dietary urea treatments in a $5{\times}5$ Latin Square experimental design. The five levels of urea were 10, 20, 30, 40 and 50 g urea/kg DM of steam-treated oil palm fronds (OPF) and dry matter intake tended (p>0.05) to increase with increasing urea supplementation up to 30 g/kg OPF (77.7 g/kg $BW^{0.75}$), but decreased (p<0.05) with 40 and 50 g urea/kg OPF (67.4 and 63.7 g/kg BW0.75, respectively) supplementation. Similarly, dry matter, organic matter, crude protein, neutral detergent fiber and hemicellulose digestibilities increased (p<0.05) with the addition of urea to 30 g/kg OPF but thereafter decreased (p<0.05) with 40 and 50 g/kg OPF. Ruminal pH, ruminal $NH_3$-N concentration and plasma urea concentration increased linearly (p<0.01) and quadratically (p<0.01) as a consequence of addition of urea to the diet. Excretion of total purine derivatives (PD) by goats fed 30 g of urea/kg OPF was highest (p<0.05) followed by goats fed 20, 40, 10 and 50 g of urea/kg OPF. Microbial N (g N/day) and efficiency of microbial N supply expressed as g N/kg organic matter apparently digested in the rumen were higher (p<0.05) in goats fed 30 g of urea/kg OPF (5.5 g N/day and 22.0 g N/kg DOMR, respectively) than in goats on 10 and 50 g of urea/kg OPF treatments. However, the former did not differ from goats fed 20 g of urea/kg OPF (3.9 g N/day and 16.6 g N/kg DMOR, respectively). Ruminal VFA concentration, protein/energy ratio, N absorption and N retention increased (p<0.05) with the addition of urea to the diet up to 30 g/kg OPF but decreased (p<0.05) with 40 and 50 g/kg OPF. This implies that the optimal level of urea supplementation in an OPF based diet was about 30 g urea/kg OPF.
This study evaluated the effects of live yeast and yeast cell-wall mannan-oligosaccharide supplementation onperformance and nutrient digestibility during early lactation in cows fed a diet based on a mixture of corn silage and alfalfa hay as forage sources. Eight multiparous Holstein dairy cows (average days in milk, 27${\pm}$6) were used in a replicated 4${\times}$4 Latin square design. Diets contained 45% forage and 55% concentrate on a dry matter (DM) basis and treatments were: i) basal diet without additive (Control), ii) basal diet with 32 g/d of mannan-oligosaccharides (MOS), iii) basal diet with $1.2{\times}10^{10}$ colony forming units per day (cfu/d) of live yeast (Saccharomyces cerevisiae CNCM 1-1077; SC), and iv) basal diet with a mixture of MOS (32 g/d) and SC ($1.2{\times}10^{10}$ cfu/d; MOS+SC). Treatments had no effect (p>0.05) on DM intake and yields of milk, 3.5% fat-(FCM) and energy-corrected milk (ECM), and on milk fat percentage, body condition score and blood metabolites. Compared with the Control, only supplementation of SC resulted in numerically higher yields of FCM (41.9 vs. 40.1 kg/d) and ECM (41.8 vs. 40.3 kg/d), and milk fat percentage (3.64 vs. 3.43%). While the MOS diet had no effects on performance compared to the Control, the combination treatment MOS+SC increased milk protein percentage (p<0.05). Also, the MOS supplementation, both alone or in combination with SC, numerically increased milk fat percentage. The SC supplementation increased apparent digestibility of DM and crude protein while the MOS supplementation did not affect digestibility. Concentrations of total volatile fatty acids (VFA) and ruminal pH were similar across treatments. Overall results indicated that supplementation of MOS produced variable and inconsistent effects on rumen metabolism and performance, whereas SC supplementation improved nutrient digestibility and numerically increased FCM and ECM yields, which could not be enhanced by the combined supplementation of MOS+SC. According to our experimental condition, there was no effect of MOS alone or in combination with SC on dairy cow performance.
Miscanthus sacchariflorus var. No. 1 has been newly developed in Korea. This study was conducted to assess the feed value of M. sacchariflorus var. No. 1 at different growth and harvesting time. Total 3 different miscanthus - 1y4m (first shoot and harvested at 4 month), 2y4m (second shoot and harvested at 4 month) and 2y8m (second shoot and harvested at 8 month). Two experiments were carried out, In vitro rumen simulated fermentation and In situ dry matter digestibility (DMD). Ruminal pH at in vitro fermentation were higher in M. sacchariflorus var. No. 1 treatments compared to the rice straw (RS). In volatile fatty acid production, 1y4m resulted in higher acetate production than the other M. sacchariflorus var. No. 1 at higher maturity stages. Significant differences among treatments were observed in propionate and total volatile fatty acid (VFA) productions at 9, 24 and 48 h of incubation times. Higher ammonia nitrogen productions were found as increased maturity of M. sacchariflorus var. No. 1. At In situ experiment, high DMD was detected in the order of RS (60.51%) > 1y4m (57.65%) > 2y4m (57.63%) > 2y8m (46.28%). The results from this study indicate that young and early harvested M. sacchariflorus var. No. 1 are able to improve its nutrient values in the ruminant animal.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.