• Title/Summary/Keyword: Rumen Manipulation

Search Result 24, Processing Time 0.019 seconds

In vitro Screening of Essential Oil Active Compounds for Manipulation of Rumen Fermentation and Methane Mitigation

  • Joch, M.;Cermak, L.;Hakl, J.;Hucko, B.;Duskova, D.;Marounek, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.7
    • /
    • pp.952-959
    • /
    • 2016
  • The objective of this study was to investigate the effects of 11 active compounds of essential oils (ACEO) on rumen fermentation characteristics and methane production. Two trials were conducted. In trial 1, ACEO (eugenol, carvacrol, citral, limonene, 1,4-cineole, p-cymene, linalool, bornyl acetate, ${\alpha}$-pinene, and ${\beta}$-pinene) at a dose of $1,000{\mu}L/L$ were incubated for 24 h in diluted rumen fluid with a 70:30 forage:concentrate substrate (16.2% crude protein; 36.6% neutral detergent fiber). Three fistulated Holstein cows were used as donors of rumen fluid. The reduction in methane production was observed with nine ACEO (up to 86% reduction) compared with the control (p<0.05). Among these, only limonene, 1,4-cineole, bornyl acetate, and ${\alpha}$-pinene did not inhibit volatile fatty acid (VFA) production, and only bornyl acetate produced less methane per mol of VFA compared with the control (p<0.05). In a subsequent trial, the effects on rumen fermentation and methane production of two concentrations (500 and $2,000{\mu}L/L$) of bornyl acetate, the most promising ACEO from the first trial, were evaluated using the same in vitro incubation method that was used in the first trial. In trial 2, monensin was used as a positive control. Both doses of bornyl acetate decreased (p<0.05) methane production and did not inhibit VFA production. Positive effects of bornyl acetate on methane and VFA production were more pronounced than the effects of monensin. These results confirm the ability of bornyl acetate to decrease methane production, which may help to improve the efficiency of energy use in the rumen.

Natural Products as Manipulators of Rumen Fermentation

  • Wallace, R. John;McEwan, Neil R.;McIntosh, Freda M.;Teferedegne, Belete;Newbold, C. James
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.10
    • /
    • pp.1458-1468
    • /
    • 2002
  • There is increasing interest in exploiting natural products as feed additives to solve problems in animal nutrition and livestock production. Essential oils and saponins are two types of plant secondary compounds that hold promise as natural feed additives for ruminants. This paper describes recent advances in research into these additives. The research has generally concentrated on protein metabolism. Dietary essential oils caused rates of NH$_3$ production from amino acids in ruminal fluid taken from sheep and cattle receiving the oils to decrease, yet proteinase and peptidase activities were unchanged. Hyper-ammonia-producing (HAP) bacteria were the most sensitive of ruminal bacteria to essential oils in pure culture. Essential oils also slowed colonisation and digestion of some feedstuffs. Ruminobacter amylophilus may be a key organism in mediating these effects. Saponin-containing plants and their extracts appear to be useful as a means of suppressing the bacteriolytic activity of rumen ciliate protozoa and thereby enhancing total microbial protein flow from the rumen. The effects of some saponins seems to be transient, which may stem from the hydrolysis of saponins to their corresponding sapogenin aglycones, which are much less toxic to protozoa. Saponins also have selective antibacterial effects which may prove useful in, for example, controlling starch digestion. These studies illustrate that plant secondary compounds, of which essential oils and saponins comprise a small proportion, have great potential as 'natural' manipulators of rumen fermentation, to the potential benefit of the farmer and the environment.

Strategies to Mitigate Enteric Methane Emissions from Ruminant Animals

  • Tseten, Tenzin;Sanjorjo, Rey Anthony;Kwon, Moonhyuk;Kim, Seon-Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.3
    • /
    • pp.269-277
    • /
    • 2022
  • Human activities account for approximately two-thirds of global methane emissions, wherein the livestock sector is the single massive methane emitter. Methane is a potent greenhouse gas of over 21 times the warming effect of carbon dioxide. In the rumen, methanogens produce methane as a by-product of anaerobic fermentation. Methane released from ruminants is considered as a loss of feed energy that could otherwise be used for productivity. Economic progress and growing population will inflate meat and milk product demands, causing elevated methane emissions from this sector. In this review, diverse approaches from feed manipulation to the supplementation of organic and inorganic feed additives and direct-fed microbial in mitigating enteric methane emissions from ruminant livestock are summarized. These approaches directly or indirectly alter the rumen microbial structure thereby reducing rumen methanogenesis. Though many inorganic feed additives have remarkably reduced methane emissions from ruminants, their usage as feed additives remains unappealing because of health and safety concerns. Hence, feed additives sourced from biological materials such as direct-fed microbials have emerged as a promising technique in mitigating enteric methane emissions.

Milk Yield and Its Fat Content as Affected by Dietary Factors: A-Rewiew

  • Sawal, R.K.;Kurar, C.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.11 no.3
    • /
    • pp.217-233
    • /
    • 1998
  • Milk yield and its composition is governed by level of nutrition and the composition of diet. Higher concentrate input improves milk yield, whereas its input at moderate levels improves yield of milk fat. High level of dietary protein improves dry matter intake and milk production, however, CP content above 14% has less advantage. Milk yield is enhanced by the feeding of cottonseed and soyabean meal, whereas milk fat increases by the supplementation of cottonseed. Dietary fat increases energy intake, production of milk and milk fat. Quality and quantity of feeds consumed affect fermentation patterns in rumen. Among the rumen metabolites, volatile fatty acids (VFA) content and propionate proportion have been related positively with milk yield, whereas proportion of acetate and butyrate have been related positively with milk fat content. Dietary carbohydrates through the source of sugar, starch, roughage and fibre affect VFA concentration in rumen. Therefore, concentration of volatile fatty acids could be altered to the advantage of consumer through judicious manipulation of diet.

Conjugated Linoleic Acid (CLA) Production in the Rumen -Roles of Butyrivibrio fibrisolvens A38

  • Kim, Dae-Ok;Kim, Tae-Wan;Heo, Ho-Jin;Imm, Jee-Young;Hwang, Han-Joon;Oh, Sejong;Kim, Young-Jun
    • Food Science of Animal Resources
    • /
    • v.24 no.3
    • /
    • pp.303-309
    • /
    • 2004
  • Conjugated linoleic acid (CLA) is currently under intensive investigation due to its health benefits. A great deal of interest has been paid to the possible health-promoting roles of CLA, but there are not many studies available on the mechanism of CLA production by ruminal microorganisms. CLA is produced as an intermediate of the characteristic biohydrogenation process of linoleic acid(LA) in the rumen and its production has direct relationship to numerous environmental factors including particle association, substrate concentration, forage-to-grain ratio, pH, ionopore, bacterial cell density, etc. Some of these factors were known to affect hydrogenating activities of Butyrivibrio fibrisolvens A38 which is an active rumen bacterium in CLA production. Dairy cow is a main source of CLA, and its level could be increased by dietary manipulation changing the physiological environment of rumen bacteria such as B. fibrisolvens A38. Therefore, the effects of various factors on. ruminal biohydrogenation should be carefully considered to optimize not only CLA production, but also other fatty acid metabolism, both of which are directly affecting nutritional quality and functionality of dairy products. In this review, the relationship between various environmental factors and ruminal CLA production is discussed focusing on the CLA production of B. fibrisolvens A38.

Manipulation of Rumen Fermentation by Yeast: The Effects of Dried Beer Yeast on the In vitro Degradability of Forages and Methane Production

  • Ando, S.;Khan, R.I.;Takahasi, J.;Gamo, Y.;Morikawa, R.;Nishiguchi, Y.;Hayasaka, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.1
    • /
    • pp.68-72
    • /
    • 2004
  • The effects of the addition of yeast on in vitro roughage degradability and methane production were investigated in order to clarify the effects of yeast on the rumen microbes and to establish methods of rumen manipulation. Three roughages (whole crop corn, rice straw and Italian ryegrass) were incubated for 3, 6, 12 and 24 h with or without dried beer yeast following the method described by Tilley and Terry. Using the same method, these roughages were incubated with or without yeast extract, albumin or purified DNA. In vitro methane production was measured with or without dried beer yeast at 12 and 24 h. The degradability of yeast was found to be 57 and 80% at 12 and 24 h, respectively. The rate of degradation of fraction b was 6.16%/h. There was a significant increase in roughage degradability at 6 h (p<0.05), 12 h (p<0.05) and 24 h (p<0.01) by dried yeast addition. The degradability of all three roughages was higher in the samples treated with yeast extract than in the no addition samples except in the case of rice straw incubated for 12 h. Nevertheless, the magnitude of increment was smaller with the addition of yeast extract than without the addition of yeast. With the addition of purified DNA, there were significant increases in roughage degradability at 6 h (p<0.01), 12 h (p<0.01) and 24 h (p<0.05); however, higher degradability values were detected in the samples to which albumin was added, particularly at 6 h. If the degradability values of the no addition samples with those of samples containing yeast, yeast extract, DNA and albumin were compared, the largest difference was found in the samples to which yeast was added, although it is worth noting that higher values were observed in the yeast extract samples than in the DNA or albumin samples, with the exception of the case of rice straw incubated for 24 h. Methane production was significantly increased at both 12 and 24 h incubation. The increment of roughage degradation and methane production brought about by the addition of dried beer yeast to the samples was thought to be due to the activation of rumen microbes. Water soluble fraction of yeast also seemed to play a role in ruminal microbe activation. The increment of degradability is thought to be partially due to the addition of crude protein or nucleic acid but it is expected that other factors play a greater role. And those factors may responsible for the different effects of individual yeast on ruminal microbes.

Recent Advances in Gut Microbiology and Their Possible Contribution to Animal Health and Production - A Review -

  • Kobayashi, Yasuo;Koike, Satoshi;Taguchi, Hidenori;Itabashi, Hisao;Kam, Dong K.;Ha, Jong K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.6
    • /
    • pp.877-884
    • /
    • 2004
  • Although gut microbial functions have been analyzed through cultivation of isolated microbes, molecular analysis without cultivation is becoming a popular approach in recent years. Gene cloning studies have partially revealed the mechanisms involved in fiber digestion of individual microbe. The molecular approach finally made it possible to analyze full genomes of the representative rumen cellulolytic bacteria Fibrobacter and Ruminococcus. The coming database may contain useful information such as regulation of gene expression relating to fiber digestion. Meanwhile, unculturable bacteria are still poorly characterized, even though they are main constituents of gut microbial ecosystem. The molecular analysis is essential to initiating the studies on these unculturable bacteria. The studies dealing with rumen and large intestine are revealing considerable complexity of the microbial ecosystems with many undescribed bacteria. These bacteria are being highlighted as possibly functional members contributing to feed digestion. Manipulation of gut bacteria and gut ecology for improving animal production is still at challenging stage. Bacteria newly introduced in the rumen, whether they are genetically modified or not, suffer from poor survival. In one of these attempts, Butyrivibrio fibrisolvens expressing a foreign dehalogenase was successfully established in sheep rumen to prevent fluoroacetate poisoning. This expands choice of forages in tropics, since many tropic plants are known to contain the toxic fluoroacetate. This example may promise the possible application of molecular breeding of gut bacteria to the host animals with significance in their health and nutrition. When inoculation strategies for such foreign bacteria are considered, it is obvious that we should have more detailed information of the gut microbial ecology.

Mitigation of Methane Emission and Energy Recycling in Animal Agricultural Systems

  • Takahashi, J.;Mwenya, B.;Santoso, B.;Sar, C.;Umetsu, K.;Kishimoto, T.;Nishizaki, K.;Kimura, K.;Hamamoto, O.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.8
    • /
    • pp.1199-1208
    • /
    • 2005
  • Abatement of greenhouse gas emitted from ruminants and promotion of biogas energy from animal effluent were comprehensively examined in each anaerobic fermentation reactor and animal experiments. Moreover, the energy conversion efficiency of biomass energy to power generation were evaluated with a gas engine generator or proton exchange membrane fuel cell (PEMFC). To mitigate safely rumen methanogenesis with nutritional manipulation the suppressing effects of some strains of lactic acid bacteria and yeast, bacteriocin, $\beta$1-4 galactooligosaccharide, plant extracts (Yucca schidigera and Quillaja saponarea), L-cysteine and/or nitrate on rumen methane emission were compared with antibiotics. For in vitro trials, cumulative methane production was evaluated using the continuous fermented gas qualification system inoculated with the strained rumen fluid from rumen fistulated Holstein cows. For in vivo, four sequential ventilated head cages equipped with a fully automated gas analyzing system were used to examine the manipulating effects of $\beta$1-4 galactooligosaccharide, lactic acid bacteria (Leuconostoc mesenteroides subsp. mesenteroides), yeast (Trichosporon serticeum), nisin and Yucca schidigera and/or nitrate on rumen methanogenesis. Furthermore, biogas energy recycled from animal effluent was evaluated with anaerobic bioreactors. Utilization of recycled energy as fuel for a co-generator and fuel cell was tested in the thermophilic biogas plant system. From the results of in vitro and in vivo trials, nitrate was shown to be a strong methane suppressor, although nitrate per se is hazardous. L-cysteine could remove this risk. $\beta$1-4 galactooligosaccharide, Candida kefyr, nisin, Yucca schidigera and Quillaja saponarea are thought to possibly control methanogenesis in the rumen. It is possible to simulate the available energy recycled through animal effluent from feed energy resources by making total energy balance sheets of the process from feed energy to recycled energy.

Manipulation of Cassava Cultivation and Utilization to Improve Protein to Energy Biomass for Livestock Feeding in the Tropics

  • Wanapat, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.3
    • /
    • pp.463-472
    • /
    • 2003
  • Cassava (Manihot esculenta, Crantz), an annual tropical tuber crop, was nutritionally evaluated as a foliage for ruminants, especially dairy cattle. Cultivation of cassava biomass to produce hay is based on a first harvest of the foliage at three months after planting, followed every two months thereafter until one year. Inter-cropping of leguminous fodder as food-feed between rows of cassava, such as Leucaena leucocephala or cowpea (Vigna unculata), enriches soil fertility and provides additional fodder. Cassava hay contained 20 to 25% crude protein in the dry matter with good profile of amino acids. Feeding trials with cattle revealed high levels of DM intake (3.2% of BW) and high DM digestibility (71%). The hay contains tannin-protein complexes which could act as rumen by - pass protein for digestion in the small intestine. As cassava hay contains condensed tannins, it could have subsequent impact on changing rumen ecology particularly changing rumen microbes population. Therefore, supplementation with cassava hay at 1-2 kg/hd/d to dairy cattle could markedly reduce concentrate requirements, and increase milk yield and composition. Moreover, cassava hay supplementation in dairy cattle could increase milk thiocyanate which could possibly enhance milk quality and milk storage, especially in small holder-dairy farming. Condensed tannins contained in cassava hay have also been shown to potentially reduce gastrointestinal nematodes in ruminants and therefore could act as an anthelmintic agent. Cassava hay is therefore an excellent multi-nutrient source for animals, especially for dairy cattle during the long dry season, and has the potential to increase the productivity and profitability of sustainable livestock production systems in the tropics.

Short Review of Global Methane Situation and of Facilities to Reduce in Ruminants in Third Wol1d Countries

  • Islam, M.R.;Begum, J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.10 no.2
    • /
    • pp.157-163
    • /
    • 1997
  • This paper analyses a number of important areas relating to methane production in ruminants, consequent hazards and different methods of reducing this gas. Clearly methane not only affects on the environment but also on the economy of animal production. Several factors including feed, species, microbes, rumen environment, etc. are responsible for methane production in animals. Although methane production can be reduced by chemical manipulation, defaunation and strategic feeding, the latter was found to be effective because the method is easier to follow than the others. Furthermore, feeding technology could play an important role in reducing methane production particularly in developing countries because of its relative cost effectiveness. however, it needs to compare to what extent it could reduce methane production as well as cost of animal production. Therefore, research program needs to be concentrated on the appropriate feeding system to reduce methane production, consequently pollution and cost of production particularly in developing countries.