• Title/Summary/Keyword: Rumen Fluid Characteristics

Search Result 96, Processing Time 0.025 seconds

Effects of Dietary Copper on Ruminal Fermentation, Nutrient Digestibility and Fibre Characteristics in Cashmere Goats

  • Zhang, Wei;Wang, Runlian;Zhu, Xiaoping;Kleemann, David O;Yue, Chungwang;Jia, Zhihai
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.12
    • /
    • pp.1843-1848
    • /
    • 2007
  • Thirty-six 1.5 year-old Inner Mongolian White Cashmere wether goats (body weight $28.14{\pm}1.33$ kg) were used to determine the effects of dietary copper (Cu) concentration on ruminal fermentation, nutrient digestibility and cashmere fibre characteristics. Wethers were fed a basal diet (containing 7.46 mg Cu/kg DM) that was supplemented with either 0 (control), 10, 20 or 30 mg Cu/kg DM. To ensure full consumption, animals were fed restrictedly with 0.75 kg feed (DM) in two equal allotments per day. The results indicated that: (1) supplemental 10 mg Cu/kg DM in the basal diet significantly (p<0.05) decreased ruminal fluid pH value and total VFA concentrations were significantly (p<0.05) increased on all Cu treatment groups. (2) Cu supplementation had no influence on DM intake and digestibility of DM, CP and ADF (p>0.05); however, NDF digestibility of groups supplemented with 10 and 20 mg Cu/kg DM were significantly higher than that of the control group (p<0.05). Apparent absorption and retention of copper were decreased with increasing level of supplementation. (3) 20 mg Cu/kg DM treatment significantly (p<0.05) improved cashmere growth rate, but cashmere diameter was not affected by Cu supplementation (p>0.05). In conclusion, supplementation of cashmere goats with Cu at the rate of 10 to 20 mg/kg DM in the basal diet resulted in some changed rumen fermentation and was beneficial for NDF digestibility, while supplementation of 20 mg Cu/kg DM improved cashmere growth. Collectively, the optimal supplemental Cu level for cashmere goats during the fibre growing period was 20 mg/kg DM (a total dietary Cu level of 27.46 mg/kg DM).

Examination of Availability of Whole Crop Silage TMR for Late Fattening Hanwoo Steers in the Cattle (비육후기 거세한우 용 사료작물 사일리지 TMR의 소 체내 이용성 조사)

  • Jugder, Shinekhuu;Choi, Seong Ho;Lee, Jeong Ju;Lee, Gyeong Geun;Lee, Sang Suk;Song, Man Kang
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.33 no.2
    • /
    • pp.131-138
    • /
    • 2013
  • The present study was conducted with three ruminally cannulated non-lactating Holstein cattle in a $3{\times}3$ Latin square design to determine the fermentation characteristics and effective degradability (ED) in the rumen, as well as the whole tract digestibility of whole crop silage based total mixed ration (TMR) in comparison with conventional separate feeding of concentrate and rice straw for late fattening Hanwoo steers. The cattle in each group were fed separate feeding of concentrate and rice straw (control), whole crop barley silage based TMR (BS-TMR) or whole crop rye silage based TMR (RS-TMR). The ruminal fermentation characteristics such as pH, ammonia-N concentration and total volatile fatty acid were not affected by the experimental diet. The molar portion of acetate ($C_2$) was lowest in rumen fluid 1 h after feeding when cattle were fed BS-TMR (p<0.033). Molar proportions of propionate ($C_3$), butyrate and $C_2/C_3$ were not influenced by the experimental diet. There were no differences in effective degradability or whole tract digestibility of feed components among any of the experimental diets. The data obtained from the metabolism trial indicate that the feeding value of TMR with BS or RS is equal to that of a conventional separate feeding of concentrate and rice straw.

Evaluation of nutritive value of chestnut hull for ruminant animals using in vitro rumen fermentation (밤 가공 부산물의 반추가축용 사료 가치 평가: in vitro 반추위 배양)

  • Jeong, Sin-Yong;Jo, Hyeon-Seon;Park, Gi-Su;Kang, Gil-Nam;Jo, Nam-Chul;Seo, Seongwon
    • Korean Journal of Agricultural Science
    • /
    • v.39 no.3
    • /
    • pp.335-340
    • /
    • 2012
  • During the manufacturing process of chestnut, 50% of biomass is produced as chestnut shell (CS) or chestnut hull (CH), a forestry by-product. Due to its high fiber content and economic benefit, there is a possibility of using chestnut hull as a supplement for a ruminant diet. Few studies, however, have been conducted on evaluating nutritive value of chestnut hull for ruminant animals. The objective of this study were thus to analyze chemical composition of CS, a by-product after the first processing of chestnut, and CH, a by-product after the second processing, and access in vitro rumen fermentation characteristics of them. For the in vitro fermentation using strained rumen fluid obtained from a fistulated Hanwoo steer, commercial total mixed ration (TMR) for dairy goat was used as a basal diet and was replaced with different proportions of chestnut shell and hull. A total number of 13 treatments were carried out in this study: 100% TMR, 100% CS, 100% CH, a mix with 50% CS and 50% of CH (MIX), TMR replaced with 5%, 10%, or 15% of CS, CH, or MIX, respectively. For each treatment, in vitro dry matter digestibility (IVDMD) and pH after 48 hours of rumen fermentation were measured. Gas production at 6, 12, 24, 48 hours of incubation was also analyzed. Compared to CH, CS contains higher level of fiber (NDF, ADF, lignin) and consequently has a lower amount of non-fiber carbohydrate, but no difference was observed in the other nutrients (i.e. crude protein, crude fat, and ash). IVDMD was significantly (p<0.05) the highest in 100% CH (71.97%) and the lowest in 100% CS (42.80%). Addition of CH by replacing TMR did not affect IVDMD, while an increase in the proportion of CS tended to decrease IVDMD. The total gas production after 48 hours of incubation and the rate of gas production were also the highest in 100% CH and the lowest in 100% CS (P<0.05). Likewise, the pH after 48 hours of fermentation was significantly (p<0.05) the lowest in 100% CH (6.33) and the highest in 100% CS (6.50), and no significant difference in gas production was observed when TMR was replaced with CS or CH up to 15% (P>0.05). In conclusion, CH may successfully be used for a supplement in a ruminant diet. The nutritive value of CS is relative low, but can replace, if not 100%, low quality forage. This study provides valuable information about the nutritive value of CS and CH. An in vivo trials, however, is needed for conclusively accessing the nutritive value of CS and CH.

Nutritional Characteristics of Forage Grown in South of Benin

  • Musco, Nadia;Koura, Ivan B.;Tudisco, Raffaella;Awadjihe, Ghislain;Adjolohoun, Sebastien;Cutrignelli, Monica I.;Mollica, Maria Pina;Houinato, Marcel;Infascelli, Federico;Calabro, Serena
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.1
    • /
    • pp.51-61
    • /
    • 2016
  • In order to provide recommendations on the most useful forage species to smallholder farmers, eleven grass and eleven legume forages grown in Abomey-Calavi in Republic of Benin were investigated for nutritive value (i.e. chemical composition and energy content) and fermentation characteristics (i.e. gas and volatile fatty acid production, organic matter degradability). The in vitro gas production technique was used, incubating the forages for 120 h under anaerobic condition with buffalo rumen fluid. Compared to legume, tropical grass forages showed lower energy (8.07 vs 10.57 MJ/kg dry matter [DM]) and crude protein level (16.10% vs 19.91% DM) and higher cell wall content (neutral detergent fiber: 63.8% vs 40.45% DM), respectively. In grass forages, the chemical composition showed a quite high crude protein content; the in vitro degradability was slightly lower than the range of tropical pasture. The woody legumes were richer in protein and energy and lower in structural carbohydrates than herbaceous plants, however, their in vitro results are influenced by the presence of complex compounds (i.e. tannins). Significant correlations were found between chemical composition and in vitro fermentation characteristics. The in vitro gas production method appears to be a suitable technique for the evaluation of the nutritive value of forages in developing countries.

Effects of Additional Levels of Phyllostachys bambusoides on Ruminal Fermentation Characteristics and Methane Emission in in vitro (왕대의 첨가수준이 반추위 in vitro 발효성상과 메탄 발생량에 미치는 영향)

  • Jo, Seong-Uk;Lee, Shin-Ja;Lee, Ye-Jun;Kim, Hyun-Sang;Eom, Jun-Sik;Choi, You-Young;Bae, Eun-Ji;Lee, Sung-Sill
    • Korean Journal of Organic Agriculture
    • /
    • v.29 no.2
    • /
    • pp.241-256
    • /
    • 2021
  • The current study was to evaluate the antioxidant activity of Phyllostachys bambusoides (PHB) as a feed additives and investigate whether its antioxidant activity could be helpful for increasing rumen fermentation characteristics and methane reduction. The antioxidant activity results showed that total polyphenols and flavonoids contents were 43.54 ± 8.68 mg CE/g and 17.13 ± 0.45 mg QE/g, respectively, and the IC50 values for 1,1-diphenyl-2-prcrylhydrazyl (DPPH) and 2,2'-azino-bis (3- ethylbenzthiazoline-6- sulphonic acid) (ABTS) radical scavenging activity were 163.13 ± 19.25 ㎍/mL and 97.07 ± 4.46 ㎍/mL, respectively. Two heads of cannulated Hanwoo (450 ± 30 kg), consuming timothy hay and a commercial concentrate (60:40, w/w) twice daily (at 09:00 and 17:30) at 2% of body weight, with free access to water and a mineral block, were used as rumen fluid donors. An in vitro incubation experiment was performed after 6, 12, 24, 48, and 72 hr with PHB added at concentration of 2, 4, and 6% of timothy hay basis. Total gas emission decreased as the amount of PHB addition increased at 6 and 24 hr of incubation. However, PHB addition did not affect total volatile fatty acid production, and methane and carbon dioxide emission also decreased as the amount of addition increased at 48 hr of incubation. Therefore, PHB was expected to be used as methane reducing additives in the ruminants.

Effects of Saponin Contained Plant Extracts on Ruminal Fermentation Characteristics and Methane Production (Saponin 함유 식물 추출물의 첨가가 반추위 발효성상과 메탄생성에 미치는 영향)

  • Ok, Ji-Un;Baek, Youl-Chang;Kim, Kyoung-Hoon;Lee, Sang-Cheol;Seol, Yong-Joo;Lee, Kang-Yeon;Choi, Chang-Weon;Jeon, Che-Ok;Lee, Sang-Suk;Lee, Sung-Sil;Oh, Young-Kyoon
    • Journal of Animal Science and Technology
    • /
    • v.53 no.2
    • /
    • pp.147-154
    • /
    • 2011
  • This study was conducted to evaluate the effects of saponin contained plant extracts on in vitro rumen fermentation characteristics and methane production. Ruminal fluid was collected from rumen cannulated Hanwoo steers fed rice straw and concentrate (5:5). Collected rumen fluids, corn starch and buffer including saponin contained plant extracts (ginseng, Ogapi, soapwort, tea plant and yucca; 0.5%/15 ml) were incubated at $39^{\circ}C$ for 24 h. All incubations were repeated five times. Rumen pH in all treatments was lower (p<0.05) compared with that of the control (no addition) during incubation time. The concentration of total VFA in all treatments was higher (p<0.05) than that of the control after 12h incubation. Compared with the control, the concentration of acetate and propionate in all treatments was lower and higher after 6h incubation, respectively. The concentration of $NH_3$-N in all treatments was lower (p<0.05) than that of the control except for Ogapi or yucca extracts supplementation. The number of protozoa in all treatments was significantly (p<0.05) lower than that of the control except for soapwort extract supplementation. The total gas production and methane production in all treatments was higher (p<0.05) and lower (p<0.05) compared with the control, except for ogapi or soapwort extracts supplementation after 12h incubation, respectively. Therefore, reduction in methane production by saponins may could be results from decreased protozoal population without any negative in vitro fermentation.

Effects of Halogenated Compounds, Organic Acids and Unsaturated Fatty Acids on In vitro Methane Production and Fermentation Characteristics

  • Choi, N.J.;Lee, S.Y.;Sung, H.G.;Lee, S.C.;Ha, J.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.9
    • /
    • pp.1255-1259
    • /
    • 2004
  • The objective of this study was to evaluate the effects of halogenated compounds, organic acids, unsaturated fatty acids and their mixtures on in vitro methane production and fermentative characteristics of mixed rumen microorganisms. Agents used in two in vitro experiments were bromoethanesulfonic acid (BES) and pyromellitic diimide (PMDI) as halogenated compound, fumarate and malate as organic acid, and linoleic acid and linolenic acid as unsaturated fatty acid sources. Ruminal fluid collected from a Holstein steer fed tall fescue and concentrate mixtures was incubated at $39^{\circ}C$ for 48 h with addition of those materials. Single supplementation of halogenated compounds, organic acids or unsaturated fatty acids decreased in vitro methane production (p<0.05). The second experiment was designed to investigate effects of combination of one of halogenated compounds and either organic acids or fatty acids on methane production. Lower concentration of methane and lower A:P ratio were observed with PMDI compared with BES (p<0.01). In general medium pH, VFA, total gas and hydrogen production, and dry matter degradability were affected by addition of the same compounds. In addition, PMDI+malate treatment resulted in the highest molar proportion of propionate, and lowest A:P ratio and methane production (p<0.01). Hydrogen production was highest in PMDI+linolenic acid and lowest in BES+malate treatment (p<0.01). PMDI+malate combination was the most recommendable in reducing methane production without too much influence on digestibility under conditions of present studies.

Pretreatments of Broussonetia papyrifera: in vitro assessment on gas and methane production, fermentation characteristic, and methanogenic archaea profile

  • Dong, Lifeng;Gao, Yanhua;Jing, Xuelan;Guo, Huiping;Zhang, Hongsen;Lai, Qi;Diao, Qiyu
    • Animal Bioscience
    • /
    • v.35 no.9
    • /
    • pp.1367-1378
    • /
    • 2022
  • Objective: The present study was conducted to examine the gas production, fermentation characteristics, nutrient degradation, and methanogenic community composition of a rumen fluid culture with Broussonetia papyrifera (B. papyrifera) subjected to ensiling or steam explosion (SE) pretreatment. Methods: Fresh B. papyrifera was collected and pretreated by ensiling or SE, which was then fermented with ruminal fluids as ensiled B. papyrifera group, steam-exploded B. papyrifera group, and untreated B. papyrifera group. The gas and methane production, fermentation characteristics, nutrient degradation, and methanogenic community were determined during the fermentation. Results: Cumulative methane production was significantly improved with SE pretreatment compared with ensiled or untreated biomass accompanied with more volatile fatty acids production. After 72 h incubation, SE and ensiling pretreatments decreased the acid detergent fiber contents by 39.4% and 22.9%, and neutral detergent fiber contents by 10.6% and 47.2%, respectively. Changes of methanogenic diversity and abundance of methanogenic archaea corresponded to the variations in fermentation pattern and methane production. Conclusion: Compared with ensiling pretreatment, SE can be a promising technique for the efficient utilization of B. papyrifera, which would contribute to sustainable livestock production systems.

Effects of Dietary Replacement of Rice Straw with Fermented Spent Mushroom (Flammuliua velutipes) Compost on Availability of Feeds in Sheep, and Growth Performance of Hanwoo Steers (발효 팽이버섯폐배지의 볏짚 대체 급여가 사료의 면양 체내 이용성 및 거세한우의 성장에 미치는 효과)

  • Shinekhuu, Jugdder;Ji, Byung-Ju;Jin, Guang-Lin;Choi, Seong-Ho;Song, Man-Kang
    • Journal of Animal Science and Technology
    • /
    • v.51 no.3
    • /
    • pp.241-248
    • /
    • 2009
  • Metabolic trial with 3 fistulated sheep was conducted in a 3 $\times$ 3 Latin square design and feeding trial with 24 Hanwoo steers in 12 month of age for 20 months was conducted to investigate the replacing effect of rice straw with fermented spent mushroom (Flammuliua velutipes) compost (FSMC) on fermentation characteristics, ruminal effective degradabilty and whole tract digestibility of nutrients in sheep, and to examine the growth performance of Hanwoo steers. Experimental diets for the metabolic trial with sheep were commercial concentrates and rice straw in the ratio of 70 : 30 (CON, DM basis). Same concentrate with 30% FSMC and 70% rice straw (FSMC-30) and 60% FSMC and 40% rice straw(FSMC-60). Diets for Hanwoo steers in three treatments were same as for metabolic trial in replacing ratio of rice straw with FSMC. pH of rumen fluid in sheep was not affected by FSMC. Ammonia-N content in the rumen fluid was highest in the sheep fed FSMC-60 at 3h (P<0.045). The CON diet increased (P<0.001) acetate proportion at 1h and 3h post feeding compared to FSMC-60 diet while propionate proportion was highest in the sheep fed FSMC-60 diet for all the sampling times (P<0.027~P<0.002). Increased proportion of butyrate was observed at 30 min prior to feeding (P<0.031), and 1h (P<0.011) and 6h(P<0.039) post feeding from sheep fed FSMC-30 diet compared to those from sheep fed other diets. Effective degradability in the rumen was not influenced by experimental diets. Whole tract digestibility of crude protein (P<0.031) and neutral detergent fiber (P<0.006) tended to be increased in the sheep fed CON diet while corresponding values were lowest in the sheep fed FSMC-60 diet. Total body weight gain of Hanwoo steers for 8 months was not different among diets, thus daily body gain was not influenced by the experimental diets.

Effect of the Level of Carbohydrates on Bio-hydrogenation and CLA Production by Rumen Bacteria When Incubated with Soybean Oil or Flaxseed Oil In vitro (Soybean Oil 및 Flaxseed Oil 첨가 배양시 탄수화물 첨가수준에 의한 반추미생물의 Bio-hydrogenation과 CLA 생성에 미치는 효과)

  • 최성호;임근우;김광림;송만강
    • Journal of Animal Science and Technology
    • /
    • v.48 no.4
    • /
    • pp.521-532
    • /
    • 2006
  • An in vitro study was conducted to examine the effect of addition level of carbohydrates on fermentation characteristics, and bio-hydrogenation of unsaturated fatty acids by mixed rumen bacteria when incubated with soybean oil or flaxseed oil. Four levels(0%, 0.3%, 0.6% and 0.9%, w/v) of the mixed carbohydrates(glucose, cellobiose, soluble starch, 1:1:1, in weight basis) and oil sources(soybean or flaxseed oil, 60mg in 150ml culture solution) were added to the mixed solution of strained rumen fluid with artificial saliva(1:4, v/v), and incubated anaerobically for 12 hours at 39℃. pH and ammonia-N concentration were lower by increasing the substrate levels at all incubation periods(P<0.05~P<0.001). The propionate proportion increased(P<0.001), but acetic acid and butyric acid decreased(P<0.001) with the substrate level at 6 and 12 h incubations. Oil sources did not influence the proportions of individual VFA. At the end of incubation, the proportions of C18:0(P<0.01), C18:1(P<0.001) and trans-11C-18:1(P<0.01) were reduced but those of C18:2(P<0.001) and C18:3(P<0.01) were enhanced by the addition of flaxseed oil compared to addition of soybean oil. The proportions of C18:0 and total CLA were reduced(P<0.01) but those of trans-11-C18: (P<0.05) and C18:2(P<0.01) were increased with the substrate level when incubated with soybean oil or flaxseed oil. There were interactions(P<0.05) in the proportions of C18:1, C18:2 and C18:3(P<0.01) between oil source and substrate level. The proportions of cis-9, trans-11-CLA and trans-10, cis-12-CLA tended to reduce with substrate level, although there was no significant difference between treatments.