• Title/Summary/Keyword: Rumen Development

Search Result 165, Processing Time 0.025 seconds

Effects of rumen cannulation surgery on physiological parameters and rumen fluid pH in Korean native Hanwoo cattle

  • Kim, Eunju;Kim, Seong Bum;Baek, Youl Chang;Kim, Min Seok;Choe, Changyong;Yoo, Jae Gyu;Jung, Younghun;Cho, Ara;Kim, Suhee;Do, Yoon Jung
    • Korean Journal of Veterinary Service
    • /
    • v.41 no.4
    • /
    • pp.221-228
    • /
    • 2018
  • Rumen cannulation is used for nutritional and microbiological research, clinical diagnosis, and rumen component transfaunation. However, the cannulation procedure can affect parameters such as complete blood count findings, serum chemistry, and rumen fluid pH. The objective of this study was to evaluate the health risks related to the rumen cannulation procedure over a 1-month period. We did not identify significant differences in red blood cell numbers or morphologies between pre- and postoperative timepoints. Moreover, no inflammation or infection was detected. Despite the absence of apparent clinical signs after surgery, serum chemistry results revealed changes in blood urea nitrogen levels and the activities of liver enzymes, including aspartate transaminase, lactate dehydrogenase, and creatinine kinase, from postoperative days 1 to 14. Rumen fluid pH, as measured from samples collected via an orogastric tube, was slightly increased after a preoperative fasting period and on postoperative day 1 but decreased thereafter from postoperative day 4, indicating a minor influence of cannulation surgery on ruminal fluid pH. This is the first study to evaluate hematological parameters and rumen pH before and after rumen cannulation surgery in Hanwoo cattle. Further research is required to better elucidate the potential effects of rumen cannulation surgery on animal health.

Effects of different amylose to amylopectin ratios on rumen fermentation and development in fattening lambs

  • Zhao, Fangfang;Ren, Wen;Zhang, Aizhong;Jiang, Ning;Liu, Wen;Wang, Faming
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.10
    • /
    • pp.1611-1618
    • /
    • 2018
  • Objective: The objective of this experiment was to examine the effects of different amylose/amylopectin ratios on rumen fermentation and development of fattening lambs. Methods: Forty-eight 7-day-old male Small-tailed Han sheep${\times}$Northeast fine wool sheep were randomly assigned to four treatments of dietary amylose/amylopectin ratios (0.12, 0.23, 0.24, and 0.48 in tapioca starch, corn starch, wheat starch and pea starch diets, respectively). Three lambs from each treatment were slaughtered at 21, 35, 56, and 77 days of age to determine the rumen fermentation and development. Results: Compared with tapioca starch diet, the pea starch diet significantly increased the concentration of ammonia nitrogen in the ruminal fluid of lambs but significantly decreased the bacterial protein content. At 56 and 77 d, the rumen propionate concentration tended to be greatest in the tapioca starch group than in other groups. The rumen butyrate concentration was the greatest in lambs fed on pea starch compared with those fed on other starch diets. Furthermore, the pea starch diet significantly stimulated rumen development by increasing the papillae height, width and surface area in the rumen ventral or dorsal locations in lambs. However, different amylose/amylopectin ratios diets did not significantly affect the feed intake, body weight, average daily gain, the relative weight and capacity of the rumen in lambs with increasing length of trial periods. Conclusion: Lambs early supplemented with a high amylose/amylopectin ratio diet had favourable morphological development of rumen epithelium, which was not conducive to bacterial protein synthesis.

Effects of Sampling Techniques and Sites on Rumen Microbiome and Fermentation Parameters in Hanwoo Steers

  • Song, Jaeyong;Choi, Hyuck;Jeong, Jin Young;Lee, Seul;Lee, Hyun Jung;Baek, Youlchang;Ji, Sang Yun;Kim, Minseok
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.10
    • /
    • pp.1700-1705
    • /
    • 2018
  • We evaluated the influence of sampling technique (cannulation vs. stomach tube) and site (dorsal sac vs. ventral sac) on the rumen microbiome and fermentation parameters in Hanwoo steers. Rumen samples were collected from three cannulated Hanwoo steers via both a stomach tube and cannulation, and 16S rRNA gene amplicons were sequenced on the MiSeq platform to investigate the rumen microbiome composition among samples obtained via 1) the stomach tube, 2) dorsal sac via rumen cannulation, and 3) ventral sac via rumen cannulation. A total of 722,001 high-quality 16S rRNA gene sequences were obtained from the three groups and subjected to phylogenetic analysis. There was no significant difference in the composition of the major taxa or alpha diversity among the three groups (p>0.05). Bacteroidetes and Firmicutes represented the first and second most dominant phyla, respectively, and their abundances did not differ among the three groups (p>0.05). Beta diversity principal coordinate analysis also did not separate the rumen microbiome based on the three sample groups. Moreover, there was no effect of sampling site or method on fermentation parameters, including pH and volatile fatty acids (p>0.05). Overall, this study demonstrates that the rumen microbiome and fermentation parameters are not affected by different sampling techniques and sampling sites. Therefore, a stomach tube can be a feasible alternative method to collect representative rumen samples rather than the standard and more invasive method of rumen cannulation in Hanwoo steers.

Nicotinic acid changes rumen fermentation and apparent nutrient digestibility by regulating rumen microbiota in Xiangzhong black cattle

  • Zhuqing Yang;Linbin Bao;Wanming Song;Xianghui Zhao;Huan Liang;Mingjin Yu;Mingren Qu
    • Animal Bioscience
    • /
    • v.37 no.2
    • /
    • pp.240-252
    • /
    • 2024
  • Objective: The aim of this study was to investigate the impact of dietary nicotinic acid (NA) on apparent nutrient digestibility, rumen fermentation, and rumen microbiota in uncastrated Xiangzhong black cattle. Methods: Twenty-one uncastrated Xiangzhong black cattle (385.08±15.20 kg) aged 1.5 years were randomly assigned to the control group (CL, 0 mg/kg NA in concentrate diet), NA1 group (800 mg/kg NA in concentrate diet) and NA2 group (1,200 mg/kg NA in concentrate diet). All animals were fed a 60% concentrate diet and 40% dried rice straw for a 120-day feeding experiment. Results: Supplemental NA not only enhanced the apparent nutrient digestibility of acid detergent fiber (p<0.01), but also elevated the rumen acetate and total volatile fatty acid concentrations (p<0.05). 16S rRNA gene sequencing analysis of rumen microbiota revealed that dietary NA changed the diversity of rumen microbiota (p<0.05) and the abundance of bacterial taxa in the rumen. The relative abundances of eight Erysipelotrichales taxa, five Ruminococcaceae taxa, and five Sphaerochaetales taxa were decreased by dietary NA (p<0.05). However, the relative abundances of two taxa belonging to Roseburia faecis were increased by supplemental 800 mg/kg NA, and the abundances of seven Prevotella taxa, three Paraprevotellaceae taxa, three Bifidobacteriaceae taxa, and two operational taxonomic units annotated to Fibrobacter succinogenes were increased by 1,200 mg/kg NA in diets. Furthermore, the correlation analysis found significant correlations between the concentrations of volatile fatty acids in the rumen and the abundances of bacterial taxa, especially Prevotella. Conclusion: The results from this study suggest that dietary NA plays an important role in regulating apparent digestibility of acid detergent fiber, acetate, total volatile fatty acid concentrations, and the composition of rumen microbiota.

Dragon fruit (Hylocereus undatus) peel pellet as a rumen enhancer in Holstein crossbred bulls

  • Matra, Maharach;Totakul, Pajaree;Viennasay, Bounnaxay;Phesatcha, Burarat;Wanapat, Metha
    • Animal Bioscience
    • /
    • v.34 no.4
    • /
    • pp.594-602
    • /
    • 2021
  • Objective: An experiment was conducted to assess the effect of dragon fruit peel pellet (DFPP) as a rumen enhancer of dry matter consumption, nutrient digestibilities, ruminal ecology, microbial protein synthesis and rumimal methane production in Holstein crossbred bulls. Methods: Four animals, with an average live-weight of 200±20 kg were randomly assigned in a 4×4 Latin square design to investigate the influence of DFPP supplementation. There were four different dietary treatments: without DFPP, and with 200, 300, and 400 g/h/d, respectively. Results: Results revealed that dry matter consumption of total intake, rice straw and concentrate were not significantly different among treatments (p>0.05). It was also found that ruminal pH was not different among treatments (p>0.05), whilst protozoal group was reduced when DFPP increased (p<0.01). Blood urea nitrogen and NH3-N concentrations were increased at 400 g of DFPP supplementation (p<0.01). Additionally, volatile fatty acid production of propionate was significantly enhanced by the DFPP supplementation (p<0.05), while production of methane was consequently decreased (p<0.05). Furthermore, microbial protein synthesis and urinary purine derivatives were remarkably increased especially at 400 g of DFPP supplementation (p<0.05). Conclusion: Plant secondary compounds or phytonutrients (PTN) containing saponins (SP) and condensed tannins (CT) have been reported to influence rumen fermentation. DFPP contains both CT and SP as a PTN. The addition of 400 g of DFPP resulted in improved rumen fermentation end-products especially propionate (C3) and microbial protein synthesis. Therefore, DFPP is a promising rumen enhancer and indicated a significant potential of DFPP as feedstuff for ruminant feed to mitigate rumen methane production.

Development of the rumen of fetuses and neonates in Korean native goats (한국재래산양의 태아 및 신생아의 제1위 발달에 관하여)

  • Huh, Chan-kwen;Kim, Chong-sup;Kwak, Soo-dong
    • Korean Journal of Veterinary Research
    • /
    • v.34 no.4
    • /
    • pp.687-694
    • /
    • 1994
  • The development of rumen in fetuses between 60, 90, 120 days of gestation and neonates of Korean native goats was investigated by light, scanning electron microscopy. The results were summarized as follows; 1. In the 60-day-old fetuses, the stomach was developed and differentiated into four compartments of rumen, reticulum, omasum, and abomasum. The ruminal epithelial layers were differentiated into two zones; a small dark basal and a large light luminar zones. 2. In the 90-day-old fetuses, the light luminar zone of the rumen was 6-12 times thicker than the dark zone. 3. In the 120-day-old fetuses, the wall of the rumen had increased in thickness, and its the mucosa was still smooth. Several undulations of various depths involving the basal zone, basement membrane and lamina propria were observed at irregular within the light zone. 4. In the neonate, the wall of the rumen had increased in thickness and the luminar surface had become wavy due to the appearance of several shallow furrows in the luminar surface of the epithelium especially between the tips of the relatively more developed undulations. 5. Scanning electron microscopic studies: In the 90-day-old fetuses, numerous microvilli and microridges were observed on the superficial epithelial layer of the rumen. The ruminal papillae were already formed at 120 days of gestation. In the 120-day-old fetuses, the ruminal papillae formed short dome-shape. In the neonate, the ruminal papillae formed pebble-shape or short finger like.

  • PDF

Effects of supplemented sodium butyrate on the in vitro rumen fermentation and growth performance of Hanwoo calves

  • Chae Hwa, Ryu;Byeonghyeon, Kim;Seul, Lee;Hyunjung, Jung;Youl Chang, Baek
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.4
    • /
    • pp.957-963
    • /
    • 2021
  • The study aimed to investigate the effects of supplemented sodium butyrate on the in vitro rumen fermentation and growth performance of Hanwoo calves. In total, four treatments were employed according to the sodium butyrate levels: no addition (control), an addition of 0.1% (treatment 1), an addition of 0.3% (treatment 2), and an addition of 0.5% (treatment 3). After 48 hours of fermentation, the ruminal pH was found to be higher in T1 than in C. Total volatile fatty acids were significantly higher in T2 and T3 than in C. The ratio of acetate and propionate was significantly lower in T1 and T3 than in C. In this study, the optimal concentration to promote rumen fermentation was found to be 0.3%, i.e., T2, and an experiment on Hanwoo calves at a farm was conducted. However, there were no significant differences between the treatment groups in terms of the daily weight gain, feed conversion ratio, and final body weight in the feeding experiment. Also, there were no significant differences in the body length, withers height, and height at hip cross between the control and the treatment groups. The addition of 0.3% sodium butyrate was most effective at promoting in vitro rumen fermentation, but it did not significantly affect the growth performance when fed to Hanwoo calves. This indicates that the addition of sodium butyrate improved rumen fermentation but did not have a growth-promoting effect. Future studies need to compare growth and carcass performance outcomes to confirm long-term effects.

Using Plant Source as a Buffering Agent to Manipulating Rumen Fermentation in an In vitro Gas Production System

  • Kang, S.;Wanapat, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.10
    • /
    • pp.1424-1436
    • /
    • 2013
  • The objective of this study was to investigate the effect of banana flower powder (BAFLOP) supplementation on gas production kinetics and rumen fermentation efficiency in in vitro incubation with different ratios of roughage to concentrate in swamp buffalo and cattle rumen fluid. Two male, rumen fistulated dairy steers and swamp buffaloes were used as rumen fluid donors. The treatments were arranged according to a $2{\times}2{\times}3$ factorial arrangement in a Completely randomized design by using two ratios of roughage to concentrate (R:C; 75:25 and 25:75) and 3 levels of BAFLOP supplementation (0, 2 and 4% of dietary substrate) into two different kinds of rumen fluid (beef cattle and swamp buffalo). Under this investigation, the results revealed that the rumen ecology was affected by R:C ratio. The pH declined as a result of using high concentrate ratio; however, supplementation of BAFLOP could buffer the pH which led to an improvement of ruminal efficiency. BAFLOP supplementation affected acetic acid (C2) when the proportion of concentrate was increased. However, there were no effect on total volatile fatty acid (TVFA) and butyric acid (C4) by BAFLOP supplementation. The microbial community was affected by BAFLOP supplementation, especially the bacterial population. As revealed by real-time PCR, the populations of F. succinogenes and R. albus were reduced by the high concentrate treatments while that of R. flavafaciens were increased. The populations of three dominant cellulolytic bacteria were enhanced by BAFLOP supplementation, especially on high concentrate diet. BAFLOP supplementation did not influence the ammonia nitrogen ($NH_3$-N) concentration, while R:C did. In addition, the in vitro digestibility was improved by either R:C or BAFLOP supplementation. The BAFLOP supplementation showed an effect on gas production kinetics, except for the gas production rate constant for the insoluble fraction (c), while treatments with high concentrate ratio resulted in the highest values. In addition, BAFLOP tended to increase gas production. Based on this study, it could be concluded that R:C had an effect on rumen ecology both in buffalo and cattle rumen fluid and hence, BAFLOP could be used as a rumen buffering agent for enhancing rumen ecology fed on high concentrate diet. It is recommended that level of BAFLOP supplementation should be at 2 to 4% of total dry matter of substrate. However, in vivo trials should be subsequently conducted to investigate the effect of BAFLOP in high concentrate diets on rumen ecology as well as ruminant production.

Distribution and Activities of Hydrolytic Enzymes in the Rumen Compartments of Hereford Bulls Fed Alfalfa Based Diet

  • Lee, S.S.;Kim, C.-H.;Ha, J.K.;Moon, Y.H.;Choi, N.J.;Cheng, K.-J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.12
    • /
    • pp.1725-1731
    • /
    • 2002
  • The distribution and activities of hydrolytic enzymes (cellulolyti, hemicellulolytic,pectinolytic and others) in the rumen compartments of Hereford bulls fed 100% alfalfa hay based diets were evaluated. The alfalfa proportion in the diet was gradually increased for two weeks. Whole rumen contents were processed into four fractions: Rumen contents including both the liquid and solid fractions were homogenized and centrifuged, and the supernatant was assayed for enzymes located in whole rumen contents (WRE); rumen contents were centrifuged and the supernatant was assayed for enzymes located in rumen fluids (RFE); feed particles in rumen contents were separated manually, washed with buffer, resuspended in an equal volume of buffer, homogenized and centrifuged and supernatant was assayed for enzymes associated with feed particles (FAE); and rumen microbial cell fraction was separated by centrifugation, suspended in an equal volume of buffer, sonicated and centrifuged, and the supernatant was assayed for enzymes bound with microbial cells (CBE). It was found that polysaccharide-degrading proteins such as $\beta$-1,4-D-endoglucanase, $\beta$-1,4-D-exoglucanase, xylanase and pectinase enzymes were located mainly with the cell bound (CBE) fraction. However, $\beta$-D-glucosidase, $\beta$-D-fucosidase, acetylesterase, and $\alpha$-L-arabinofuranosidase were located in the rumen fluids (RFE) fraction. Protease activity distributions were 37.7, 22.1 and 40.2%, and amylase activity distributions were 51.6, 18.2 and 30.2% for the RFE, FAE and CBE fractions, respectively. These results indicated that protease is located mainly in rumen fluid and with microbial cells, whereas amylase was located mainly in the rumen fluid.

Effect of Levels of Supplementation of Concentrate Containing High Levels of Cassava Chip on Rumen Ecology, Microbial N Supply and Digestibility of Nutrients in Beef Cattle

  • Wanapat, M.;Khampa, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.1
    • /
    • pp.75-81
    • /
    • 2007
  • The object of this study was to determine the influence of supplementation of concentrate containing high levels of cassava chip on rumen ecology, microbial protein and digestibility of nutrients. Four, rumen fistulated crossbred beef steers with initial body weight of 400${\pm}$10 kg were randomly assigned according to a 4${\times}$4 Latin square design. The dietary treatments were concentrate cassava chip based offering at 0, 1, 2 and 3% BW with urea-treated rice straw fed ad libitum. It was found that ruminal pH was significantly decreased with increase of concentrate. Volatile fatty acids (VFA) concentration in the rumen was significantly different among treatments. In addition, a molar proportion of propionate was higher in supplemented groups at 2 and 3% BW (p<0.05), leading to significantly decreased acetate:propionate ratio. Furthermore, microbial N supply was significantly improved and was highest at 2% BW supplementation. The efficiency of rumen microbial-N synthesis based on organic matter (OM) truly digested in the rumen was highest in level of concentrate supplementation at 2% BW (80% of cassava chip in diets). Moreover, bacterial populations such as amylolytic bacteria was linearly increased, while cellulolytic bacteria was linearly decreased (p<0.01) when cattle received concentrate supplementation in all levels. The total protozoal counts were significantly increased, while fungal zoospores were dramatically decreased in cattle receiving increased levels of concentrate. In conclusion, cassava chip can be use as energy source at 80% in concentrate and supplementation of concentrate at 2% BW with urea-treated rice straw as roughage could improve rumen fermentation efficiency in beef cattle.