• Title/Summary/Keyword: Rule-based classification analysis

Search Result 114, Processing Time 0.023 seconds

A Study on Classification of Married Women based on their Experiences of Family of origin and Family Strength - Focused on Family Differentiation and the Family Rules - (기혼여성의 원가족 경험의 유형화와 가족건강성과의 관계 - 가족분화와 가족규칙을 중심으로 -)

  • Lee, Ji-Min
    • Korean Journal of Human Ecology
    • /
    • v.21 no.2
    • /
    • pp.181-195
    • /
    • 2012
  • The purpose of this study was to explore clusters of married woman based on family differentiation and family rules originating from their family of origin, and to examine family strength according to clusters. The research instrument comprised of a questionnaire completed by 269 married women that investigated family differentiation and family rules based on family origins, and the comparative strength of their nuclear family. Analysis of subgroups was based on four representative categories differentiating family rule patterns. Cluster analysis demonstrated that the higher family differentiation level and lower-mid family rules level were related to greater family strength. As a subgroup, lowest levels of family strength were associated with lower family differentiation and lower family rules in all clusters. Findings supported the efficacy of a typological approach for investigation of experiences of married women based on family origin.

Risk Based Accidental Limit State Evaluation on Explosion Accident at Shale Shaker Room of Semi-Submersible Drilling Rig (반잠수식 시추선의 Shale Shaker Room 폭발 사고에 대한 위험도 기반 사고한계상태 평가)

  • Yoo, Seung-Jae;Kim, Han-Byul;Park, Jin-Hoo;Won, Sun-Il;Choi, Byung-Ki
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2015.09a
    • /
    • pp.69-73
    • /
    • 2015
  • An evaluation of the accidental limit state (ALS) for design of a semi-submersible drilling rig is one of the essential design requirements as well as ultimate limit state (ULS) and fatigue limit state (FLS). This paper describes the ALS evaluation on the explosion accident at shale shaker room of semi-submersible drilling rig. There are three steps for the ALS evaluation such as structural analysis at concept design, risk based safety design and structural analysis at detailed design. For the ALS evaluation at concept design, conceptual explosion overpressure from the Rule guided by the classification society was used in the structural analysis that was carried out using LS-DYNA. To set up the design accidental load (DAL), explosion analysis was carried out using FLACS taking safety barriers into consideration. Then, the structural analysis was carried out applying DAL for the ALS evaluation at detailed design. Through the ALS evaluation on the explosion at shale shaker room, the importance of the risk based safety design was described.

  • PDF

Prediction of High Level Ozone Concentration in Seoul by Using Multivariate Statistical Analyses (다변량 통계분석을 이용한 서울시 고농도 오존의 예측에 관한 연구)

  • 허정숙;김동술
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.9 no.3
    • /
    • pp.207-215
    • /
    • 1993
  • In order to statistically predict $O_3$ levels in Seoul, the study used the TMS (telemeted air monitoring system) data from the Department of Environment, which have monitored at 20 sites in 1989 and 1990. Each data in each site was characterized by 6 major criteria pollutants ($SO_2, TSP, CO, NO_2, THC, and O_3$) and 2 meteorological parameters, such as wind speed and wind direction. To select proper variables and to determine each pollutant's behavior, univariate statistical analyses were extensively studied in the beginning, and then various applied statistical techniques like cluster analysis, regression analysis, and expert system have been intensively examined. For the initial study of high level $O_3$ prediction, the raw data set in each site was separated into 2 group based on 60 ppb $O_3$ level. A hierarchical cluster analysis was applied to classify the group based on 60 ppb $O_3$ into small calsses. Each class in each site has its own pattern. Next, multiple regression for each class was repeatedly applied to determine an $O_3$ prediction submodel and to determine outliers in each class based on a certain level of standardized redisual. Thus, a prediction submodel for each homogeneous class could be obtained. The study was extended to model $O_3$ prediction for both on-time basis and 1-hr after basis. Finally, an expect system was used to build a unified classification rule based on examples of the homogenous classes for all of sites. Thus, a concept of high level $O_3$ prediction model was developed for one of $O_3$ alert systems.

  • PDF

First-Order Logic Generation and Weight Learning Method in Markov Logic Network Using Association Analysis (연관분석을 이용한 마코프 논리네트워크의 1차 논리 공식 생성과 가중치 학습방법)

  • Ahn, Gil-Seung;Hur, Sun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.38 no.1
    • /
    • pp.74-82
    • /
    • 2015
  • Two key challenges in statistical relational learning are uncertainty and complexity. Standard frameworks for handling uncertainty are probability and first-order logic respectively. A Markov logic network (MLN) is a first-order knowledge base with weights attached to each formula and is suitable for classification of dataset which have variables correlated with each other. But we need domain knowledge to construct first-order logics and a computational complexity problem arises when calculating weights of first-order logics. To overcome these problems we suggest a method to generate first-order logics and learn weights using association analysis in this study.

A Study on the Buckling Strength of the Skirt Structure in the Spherical LNG Carriers (구형 LNG운반선의 탱크지지 구조인 스커트의 좌굴강도에 대한 연구)

  • Kim, Ul-Nyeon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.5
    • /
    • pp.393-405
    • /
    • 2017
  • This paper deals with the buckling strength of the skirt structure in the spherical LNG carriers. The spherical cargo tank systems consist of spherical tank, skirt, tank cover, pump tower, etc. The skirt supports the spherical cargo tank and is connected with ship hull structure. It is designed to act as a thermal brake between the tank and the hull structure by reducing the thermal conduction from the tank to the supporting structure. It is built up of three parts, upper aluminum part, middle stainless steel part and lower carbon steel part. The 150K spherical LNG carrier was designed and carried out the strength verification under Classification Societies Rule. The design loads due to acceleration, thermal distribution, self-weight and cargo weight were estimated considering requirements of the Class Rule and numerical simulation analyses. Based on the obtained design loads and experienced project data, the initial structure scantling was carried out. To verify the structural integrity, theoretical and numerical analyses were carried out and strength was evaluated aspect of buckling capacity. The results by LR and DNV design code are shown and discussed.

The extension of the largest generalized-eigenvalue based distance metric Dij1) in arbitrary feature spaces to classify composite data points

  • Daoud, Mosaab
    • Genomics & Informatics
    • /
    • v.17 no.4
    • /
    • pp.39.1-39.20
    • /
    • 2019
  • Analyzing patterns in data points embedded in linear and non-linear feature spaces is considered as one of the common research problems among different research areas, for example: data mining, machine learning, pattern recognition, and multivariate analysis. In this paper, data points are heterogeneous sets of biosequences (composite data points). A composite data point is a set of ordinary data points (e.g., set of feature vectors). We theoretically extend the derivation of the largest generalized eigenvalue-based distance metric Dij1) in any linear and non-linear feature spaces. We prove that Dij1) is a metric under any linear and non-linear feature transformation function. We show the sufficiency and efficiency of using the decision rule $\bar{{\delta}}_{{\Xi}i}$(i.e., mean of Dij1)) in classification of heterogeneous sets of biosequences compared with the decision rules min𝚵iand median𝚵i. We analyze the impact of linear and non-linear transformation functions on classifying/clustering collections of heterogeneous sets of biosequences. The impact of the length of a sequence in a heterogeneous sequence-set generated by simulation on the classification and clustering results in linear and non-linear feature spaces is empirically shown in this paper. We propose a new concept: the limiting dispersion map of the existing clusters in heterogeneous sets of biosequences embedded in linear and nonlinear feature spaces, which is based on the limiting distribution of nucleotide compositions estimated from real data sets. Finally, the empirical conclusions and the scientific evidences are deduced from the experiments to support the theoretical side stated in this paper.

Explicit Categorization Ability Predictor for Biology Classification using fMRI

  • Byeon, Jung-Ho;Lee, Il-Sun;Kwon, Yong-Ju
    • Journal of The Korean Association For Science Education
    • /
    • v.32 no.3
    • /
    • pp.524-531
    • /
    • 2012
  • Categorization is an important human function used to process different stimuli. It is also one of the most important factors affecting measurement of a person's classification ability. Explicit categorization, the representative system by which categorization ability is measured, can verbally describe the categorization rule. The purpose of this study was to develop a prediction model for categorization ability as it relates to the classification process of living organisms using fMRI. Fifty-five participants were divided into two groups: a model generation group, comprised of twenty-seven subjects, and a model verification group, made up of twenty-eight subjects. During prediction model generation, functional connectivity was used to analyze temporal correlations between brain activation regions. A classification ability quotient (CQ) was calculated to identify the verbal categorization ability distribution of each subject. Additionally, the connectivity coefficient (CC) was calculated to quantify the functional connectivity for each subject. Hence, it was possible to generate a prediction model through regression analysis based on participants' CQ and CC values. The resultant categorization ability regression model predictor was statistically significant; however, researchers proceeded to verify its predictive ability power. In order to verify the predictive power of the developed regression model, researchers used the regression model and subjects' CC values to predict CQ values for twenty-eight subjects. Correlation between the predicted CQ values and the observed CQ values was confirmed. Results of this study suggested that explicit categorization ability differs at the brain network level of individuals. Also, the finding suggested that differences in functional connectivity between individuals reflect differences in categorization ability. Last, researchers have provided a new method for predicting an individual's categorization ability by measuring brain activation.

A Comparative Experiment on Dimensional Reduction Methods Applicable for Dissimilarity-Based Classifications (비유사도-기반 분류를 위한 차원 축소방법의 비교 실험)

  • Kim, Sang-Woon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.3
    • /
    • pp.59-66
    • /
    • 2016
  • This paper presents an empirical evaluation on dimensionality reduction strategies by which dissimilarity-based classifications (DBC) can be implemented efficiently. In DBC, classification is not based on feature measurements of individual objects (a set of attributes), but rather on a suitable dissimilarity measure among the individual objects (pair-wise object comparisons). One problem of DBC is the high dimensionality of the dissimilarity space when a lots of objects are treated. To address this issue, two kinds of solutions have been proposed in the literature: prototype selection (PS)-based methods and dimension reduction (DR)-based methods. In this paper, instead of utilizing the PS-based or DR-based methods, a way of performing DBC in Eigen spaces (ES) is considered and empirically compared. In ES-based DBC, classifications are performed as follows: first, a set of principal eigenvectors is extracted from the training data set using a principal component analysis; second, an Eigen space is expanded using a subset of the extracted and selected Eigen vectors; third, after measuring distances among the projected objects in the Eigen space using $l_p$-norms as the dissimilarity, classification is performed. The experimental results, which are obtained using the nearest neighbor rule with artificial and real-life benchmark data sets, demonstrate that when the dimensionality of the Eigen spaces has been selected appropriately, compared to the PS-based and DR-based methods, the performance of the ES-based DBC can be improved in terms of the classification accuracy.

Development of the Rule-based Smart Tourism Chatbot using Neo4J graph database

  • Kim, Dong-Hyun;Im, Hyeon-Su;Hyeon, Jong-Heon;Jwa, Jeong-Woo
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.2
    • /
    • pp.179-186
    • /
    • 2021
  • We have been developed the smart tourism app and the Instagram and YouTube contents to provide personalized tourism information and travel product information to individual tourists. In this paper, we develop a rule-based smart tourism chatbot with the khaiii (Kakao Hangul Analyzer III) morphological analyzer and Neo4J graph database. In the proposed chatbot system, we use a morpheme analyzer, a proper noun dictionary including tourist destination names, and a general noun dictionary including containing frequently used words in tourist information search to understand the intention of the user's question. The tourism knowledge base built using the Neo4J graph database provides adequate answers to tourists' questions. In this paper, the nodes of Neo4J are Area based on tourist destination address, Contents with property of tourist information, and Service including service attribute data frequently used for search. A Neo4J query is created based on the result of analyzing the intention of a tourist's question with the property of nodes and relationships in Neo4J database. An answer to the question is made by searching in the tourism knowledge base. In this paper, we create the tourism knowledge base using more than 1300 Jeju tourism information used in the smart tourism app. We plan to develop a multilingual smart tour chatbot using the named entity recognition (NER), intention classification using conditional random field(CRF), and transfer learning using the pretrained language models.

Estimating the Behavior Path of Seafarer Involved in Marine Accidents by Hidden Markov Model (은닉 마르코프 모델을 이용한 해양사고에 개입된 선원의 행동경로 추정)

  • Yim, Jeong-Bin
    • Journal of Navigation and Port Research
    • /
    • v.43 no.3
    • /
    • pp.160-165
    • /
    • 2019
  • The conduct of seafarer is major cause of marine accidents. This study models the behavior of the seafarer based on the Hidden Markov Model (HMM). Additionally, through the path analysis of the behavior estimated by the model, the kind of situations, procedures and errors that may have caused the marine accidents were interpreted. To successfully implement the model, the seafarer behaviors were observed by means of the summarized verdict reports issued by the Korean Maritime Safety Tribunal, and the observed results converted into behavior data suitable for HMM learning through the behavior classification framework based on the SRKBB (Skill-, Rule-, and Knowledge-Based Behavior). As a result of modeling the seafarer behaviors by the type of vessels, it was established that there was a difference between the models, and the possibility of identifying the preferred path of the seafarer behaviors. Through these results, it is expected that the model implementation technique proposed in this study can be applied to the prediction of the behavior of the seafarer as well as contribute to the prioritization of the behavior correction among seafarers, which is necessary for the prevention of marine accidents.