Park, Eun-Jin;Kwon, Oh-Woog;Kim, Kangil;Kim, Young-Kil
ETRI Journal
/
제37권3호
/
pp.541-550
/
2015
In this paper, we propose a classification-based approach for hybridizing statistical machine translation and rulebased machine translation. Both the training dataset used in the learning of our proposed classifier and our feature extraction method affect the hybridization quality. To create one such training dataset, a previous approach used auto-evaluation metrics to determine from a set of component machine translation (MT) systems which gave the more accurate translation (by a comparative method). Once this had been determined, the most accurate translation was then labelled in such a way so as to indicate the MT system from which it came. In this previous approach, when the metric evaluation scores were low, there existed a high level of uncertainty as to which of the component MT systems was actually producing the better translation. To relax such uncertainty or error in classification, we propose an alternative approach to such labeling; that is, a cut-off method. In our experiments, using the aforementioned cut-off method in our proposed classifier, we managed to achieve a translation accuracy of 81.5% - a 5.0% improvement over existing methods.
International Journal of Internet, Broadcasting and Communication
/
제12권2호
/
pp.127-136
/
2020
This paper presents an environment for rule-based English-Korean machine translation system, which supports the translation domain adaptation and the continuous translation quality improvement. For the purposes, corpus is essential, from which necessary information for translation will be acquired. The environment consists of a corpus construction part and a translation knowledge extraction part. The corpus construction part crawls news articles from some newspaper sites. The extraction part builds the translation knowledge such as newly-created words, compound words, collocation information, distributional word representations, and so on. For the translation domain adaption, the corpus for the domain should be built and the translation knowledge should be constructed from the corpus. For the continuous improvement, corpus needs to be continuously expanded and the translation knowledge should be enhanced from the expanded corpus. The proposed web-based environment is expected to facilitate the tasks of domain adaptation and translation system improvement.
International Journal of Computer Science & Network Security
/
제22권4호
/
pp.245-253
/
2022
Commenced in 1954 by IBM, machine translation has expanded immensely, particularly in this period. Machine translation can be broken into seven main steps namely- token generation, analyzing morphology, lexeme, tagging Part of Speech, chunking, parsing, and disambiguation in words. Morphological analysis plays a major role when translating Indian languages to develop accurate parts of speech taggers and word sense. The paper presents various machine translation methods used by different researchers for Indian languages along with their performance and drawbacks. Further, the paper concentrates on parts of speech (POS) tagging in Marathi dialect using various methods such as rule-based tagging, unigram, bigram, and more. After careful study, it is concluded that for machine translation, parts of speech tagging is a major step. Also, for the Marathi language, the Hidden Markov Model gives the best results for parts of speech tagging with an accuracy of 93% which can be further improved according to the dataset.
본 논문은 RBMT, SMT, PBMT를 활용한 직렬 연결 방식의 하이브리드 번역 시스템을 제안한다. 번역 시스템은 입력된 문장에 대하여 구문 분석을 진행한 후, 이 정보를 바탕으로 구문 변환과 개체명 인식을 한다. 이 결과값을 의사 문장으로 변형, 문장 분리 규칙이 적용 가능할 경우, 분리된 문장에 대하여 다중 디코딩을 수행하고, 후처리기에서 접합 규칙에 따라 번역문을 생성하였다. 실험을 통하여 어순 배치의 경우 distortion 모델에 의존하지 않고 구문 변환(rule-based syntactic transfer)규칙을 사용하는 것이 더욱 효과적인 것으로 나타났다.
기계번역이란 소스언어를 목적언어로 컴퓨터가 번역하는 소프트웨어를 의미하며 규칙기반, 통계기반 기계번역을 거쳐 최근에는 인공신경망 기반 기계번역에 대한 연구가 활발히 이루어지고 있다. 인공신경망 기계번역에서 중요한 요소 중 하나로 고품질의 병렬 말뭉치를 뽑을 수 있는데 이제까지 한국어 관련 언어쌍의 고품질 병렬 코퍼스를 구하기 쉽지 않은 실정이었다. 최근 한국정보화진흥원의 AI HUB에서 고품질의 160만 문장의 한-영 기계번역 병렬 말뭉치를 공개하였다. 이에 본 논문은 AI HUB에서 공개한 데이터 및 현재까지 가장 많이 쓰인 한-영 병렬 데이터인 OpenSubtitles와 성능 비교를 통해 각각의 데이터의 품질을 검증하고자 한다. 테스트 데이터로 한-영 기계번역 관련 공식 테스트셋인 IWSLT에서 공개한 테스트셋을 이용하여 보다 객관성을 확보하였다. 실험결과 동일한 테스트셋으로 실험한 기존의 한-영 기계번역 관련 논문들보다 좋은 성능을 보임을 알 수 있었으며 이를 통해 고품질 데이터의 중요성을 알 수 있었다.
Journal of Advanced Marine Engineering and Technology
/
제36권5호
/
pp.683-693
/
2012
통계기반 자동 번역 시스템은 구현과 유지보수의 용이함으로 최근 많은 관심을 받고 있다. 본 연구의 목적은 MOSES[1] 시스템을 이용하여 통계기반의 한/일 양방향 기계번역시스템을 구축하는 것이다. 한/일 문장단위 병렬 코퍼스를 구축하여 번역모델 학습에 이용하였고, 한/일 각각 대량의 원시 코퍼스를 이용하여 언어모델 학습에 이용하였다. 시스템 구축 결과 기존의 규칙기반 번역 시스템의 성능에 근접하는 결과를 얻었으며, 발생하는 오류의 대부분은 각 처리 단계에서 발생하는 노이즈에 기인하였다.
예제 기반 기계번역 기법은 기존의 규칙 기반 기계번역에서 발생되는 다양한 문제점들을 해결하기 위해 제안된 새로운 기계번역 패러다임이다. 하지만 기존의 순수 예제 기반 기계번역의 경우 적당한 크기의 병렬 코퍼스를 사용하여 입력문과 거의 유사한 예문을 발견하는데는 한계가 있으며, 이러한 점이 번역문 생성 단계에서 부담으로 작용하게 된다. 본 논문에서는 예제 기반 기계번역 기법의 문제점을 보완하기 위한 새로운 대안으로서 패턴과 예문을 함께 사용하여 영한 변환을 수행하는 새로운 영한 변환 기법을 제안한다. 패턴은 크게 문장 패턴과 구 패턴으로 구분되며, 패턴의 메타 부분은 유사 예문 발견 확률을 높여서 예제 기반 기계 번역 기법을 보다 실용적으로 만들어준다. 실험 결과 기존의 표층 어휘 비교에 의한 순수 예제 기반 기계번역에 비해 비교적 적은 양의 예문을 가지고도 유사 예문 발견 확률이 높다는 것을 알 수 있었다.
영어 구문 분석기는 영한 기계번역 시스템의 성능에 가장 큰 영향을 미치는 부분이다. 본 논문에서의 영어 구문 분석기는 규칙 기반 영한 기계번역 시스템의 한 부분으로서, 많은 구문 규칙을 구축하고 차트 파싱 기법으로 구문 분석을 수행한다. 구문 규칙의 수가 많기 때문에 구문 분석 과정에서 많은 구조가 생성되는데, 이로 인해 구문 분석 속도가 저하되고 많은 메모리를 필요로 하여 번역의 실용성이 떨어진다. 또한 쉼표를 포함하는 긴 문장들은 구문 분석 복잡도가 매우 높아 구문 분석 시간/공간 효율이 떨어지고 정확한 번역을 생성하기 매우 어렵다. 본 논문에서는 실제 생활에서 나타나는 긴 문장들을 효율적으로 번역하기 위해 문장 분할 방법을 적용한 3단계 구문 분석 방법을 제안한다. 구문 분석의 각 단계는 독립된 구문 규칙들을 적용하여 구문 분석을 수행함으로써 구문 분석의 복잡도를 줄이려 하였다. 이를 위해 구문 규칙을 3가지 부류로 분류하고 이를 이용한 3단계 구문 분석 알고리즘을 고안하였다. 특히 세 번째 부류의 구문 규칙은 쉼표로 구성되는 문장 구조에 대한 규칙으로 구성되는데, 이들 규칙들을 말뭉치의 분석을 통해 획득하는 방법을 제안하여 구문 분석의 적용률을 지속적으로 개선하고자 하였다. 실험을 통해 제안한 방법이 문장 분할만을 적용한 기존 2단계 구문 분석 방법에 비해 유사한 번역 품질을 유지하면서도 시간/공간 효율 면에서 우수함을 확인하였다.
This paper describes a rule-based approach for syntactic disambiguation used by the English sentence parser in E-TRAN 2001, an English-Korean machine translation system. We propose Parser's Ambiguity Type Information (PATI) to automatically identify the types of ambiguities observed in competing candidate trees produced by the parser and synthesize the types into a formal representation. PATI provides an efficient way of encoding knowledge into grammar rules and calculating rule preference scores from a relatively small training corpus. In the overall scoring scheme for sorting the candidate trees, the rule preference scores are combined with other preference functions that are based on statistical information. We compare the enhanced grammar with the initial one in terms of the amount of ambiguity. The experimental results show that the rule preference scores could significantly increase the accuracy of ambiguity resolution.
HyunJung Choi;Muyeol Choi;Seonhui Kim;Yohan Lim;Minkyu Lee;Seung Yun;Donghyun Kim;Sang Hun Kim
ETRI Journal
/
제46권1호
/
pp.127-136
/
2024
The Korean language has written (formal) and spoken (phonetic) forms that differ in their application, which can lead to confusion, especially when dealing with numbers and embedded Western words and phrases. This fact makes it difficult to automate Korean speech recognition models due to the need for a complete transcription training dataset. Because such datasets are frequently constructed using broadcast audio and their accompanying transcriptions, they do not follow a discrete rule-based matching pattern. Furthermore, these mismatches are exacerbated over time due to changing tacit policies. To mitigate this problem, we introduce a data-driven Korean spoken-to-written transcription conversion technique that enhances the automatic conversion of numbers and Western phrases to improve automatic translation model performance.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.