• Title/Summary/Keyword: Rule-Based Learning

Search Result 390, Processing Time 0.03 seconds

Fuzzy Single Layer Perceptron using Dynamic Adjustment of Threshold (동적 역치 조정을 이용한 퍼지 단층 퍼셉트론)

  • Cho Jae-Hyun;Kim Kwang-Baek
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.5 s.37
    • /
    • pp.11-16
    • /
    • 2005
  • Recently, there are a lot of endeavor to implement a fuzzy theory to artificial neural network. Goh proposed the fuzzy single layer perceptron algorithm and advanced fuzzy perceptron based on the generalized delta rule to solve the XOR Problem and the classical Problem. However, it causes an increased amount of computation and some difficulties in application of the complicated image recognition. In this paper, we propose an enhanced fuzzy single layer Perceptron using the dynamic adjustment of threshold. This method is applied to the XOR problem, which used as the benchmark in the field of pattern recognition. The method is also applied to the recognition of digital image for image application. In a result of experiment, it does not always guarantee the convergence. However, the network show improved the learning time and has the high convergence rate.

  • PDF

The Design of Optimal Fuzzy-Neural networks Structure by Means of GA and an Aggregate Weighted Performance Index (유전자 알고리즘과 합성 성능지수에 의한 최적 퍼지-뉴럴 네트워크 구조의 설계)

  • Oh, Sung-Kwun;Yoon, Ki-Chan;Kim, Hyun-Ki
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.3
    • /
    • pp.273-283
    • /
    • 2000
  • In this paper we suggest an optimal design method of Fuzzy-Neural Networks(FNN) model for complex and nonlinear systems. The FNNs use the simplified inference as fuzzy inference method and Error Back Propagation Algorithm as learning rule. And we use a HCM(Hard C-Means) Clustering Algorithm to find initial parameters of the membership function. The parameters such as parameters of membership functions learning rates and momentum weighted value is proposed to achieve a sound balance between approximation and generalization abilities of the model. According to selection and adjustment of a weighting factor of an aggregate objective function which depends on the number of data and a certain degree of nonlinearity (distribution of I/O data we show that it is available and effective to design and optimal FNN model structure with a mutual balance and dependency between approximation and generalization abilities. This methodology sheds light on the role and impact of different parameters of the model on its performance (especially the mapping and predicting capabilities of the rule based computing). To evaluate the performance of the proposed model we use the time series data for gas furnace the data of sewage treatment process and traffic route choice process.

  • PDF

Anti-Reactive Jamming Technology Based on Jamming Utilization

  • Xin Liu;Mingcong Zeng;Yarong Liu;Mei Wang;Xiyu Song
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.10
    • /
    • pp.2883-2902
    • /
    • 2023
  • Since the existing anti-jamming methods, including intelligent methods, have difficulty against high-speed reactive jamming, we studied a new methodology for jamming utilization instead of avoiding jamming. Different from the existing jamming utilization techniques that harvest energy from the jamming signal as a power supply, our proposed method can take the jamming signal as a favorable factor for frequency detection. Specifically, we design an intelligent differential frequency hopping communication framework (IDFH), which contains two stages of training and communication. We first adopt supervised learning to get the jamming rule during the training stage when the synchronizing sequence is sent. And then, we utilize the jamming rule to improve the frequency detection during the communication stage when the real payload is sent. Simulation results show that the proposed method successfully combated high-speed reactive jamming with different parameters. And the communication performance increases as the power of the jamming signal increase, hence the jamming signal can help users communicate in a low signal-to-noise ratio (SNR) environment.

Association Rule Mining and Collaborative Filtering-Based Recommendation for Improving University Graduate Attributes

  • Sheta, Osama E.
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.6
    • /
    • pp.339-345
    • /
    • 2022
  • Outcome-based education (OBE) is a tried-and-true teaching technique based on a set of predetermined goals. Program Educational Objectives (PEOs), Program Outcomes (POs), and Course Outcomes (COs) are the components of OBE. At the end of each year, the Program Outcomes are evaluated, and faculty members can submit many recommended measures which dependent on the relationship between the program outcomes and its courses outcomes to improve the quality of program and hence the overall educational program. When a vast number of courses are considered, bad actions may be proposed, resulting in unwanted and incorrect decisions. In this paper, a recommender system, using collaborative filtering and association rules algorithms, is proposed for predicting the best relationship between the program outcomes and its courses in order to improve the attributes of the graduates. First, a parallel algorithm is used for Collaborative Filtering on Data Model, which is designed to increase the efficiency of processing big data. Then, a parallel similar learning outcomes discovery method based on matrix correlation is proposed by mining association rules. As a case study, the proposed recommender system is applied to the Computer Information Systems program, College of Computer Sciences and Information Technology, Al-Baha University, Saudi Arabia for helping Program Quality Administration improving the quality of program outcomes. The obtained results revealed that the suggested recommender system provides more actions for boosting Graduate Attributes quality.

Performance Improvement of a Korean Prosodic Phrase Boundary Prediction Model using Efficient Feature Selection (효율적인 기계학습 자질 선별을 통한 한국어 운율구 경계 예측 모델의 성능 향상)

  • Kim, Min-Ho;Kwon, Hyuk-Chul
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.11
    • /
    • pp.837-844
    • /
    • 2010
  • Prediction of the prosodic phrase boundary is one of the most important natural language processing tasks. We propose, for the natural prediction of the Korean prosodic phrase boundary, a statistical approach incorporating efficient learning features. These new features reflect the factors that affect generation of the prosodic phrase boundary better than existing learning features. Notably, moreover, such learning features, extracted according to the hand-crafted prosodic phrase boundary prediction rule, impart higher accuracy. We developed a statistical model for Korean prosodic phrase boundaries based on the proposed new features. The results were 86.63% accuracy for three levels (major break, minor break, no break) and 81.14% accuracy for six levels (major break with falling tone/rising tone, minor break with falling tone/rising tone/middle tone, no break).

Neuro-Fuzzy System and Its Application Using CART Algorithm and Hybrid Parameter Learning (CART 알고리즘과 하이브리드 학습을 통한 뉴로-퍼지 시스템과 응용)

  • Oh, B.K.;Kwak, K.C.;Ryu, J.W.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.578-580
    • /
    • 1998
  • The paper presents an approach to the structure identification based on the CART (Classification And Regression Tree) algorithm and to the parameter identification by hybrid learning method in neuro-fuzzy system. By using the CART algorithm, the proposed method can roughly estimate the numbers of membership function and fuzzy rule using the centers of decision regions. Then the parameter identification is carried out by the hybrid learning scheme using BP (Back-propagation) and RLSE (Recursive Least Square Estimation) from the numerical data. Finally, we will show it's usefulness for fuzzy modeling to truck backer upper control.

  • PDF

The study on the Algorithm for Desing of Fuzzy Logic Controller Using Neural Network (신경회로망을 이용한 퍼지제어기 설계 알고리즘에 관한 연구)

  • 채명기;이상배
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1996.10a
    • /
    • pp.243-248
    • /
    • 1996
  • In this paper, a general neural-network-based connectionist model, called Fuzzy Neural Network(FNN), is proposed for the realization of a fuzzy logic control system. The proposed FNN is a feedforward multi-layered network which integrates the basic elements and functions of a traditional fuzzy logic controller into a connectionist structure which has distributed learning abilities. Such FNN can be constructed from training examples by learning rule, and the connectionist structure can be trained to develop fuzzy logic rules and find optimal input/output membership functions. Computer simulation examples will be presented to illustrate the performance and applicability of the proposed FNN, and their associated learning algorithms.

  • PDF

First-Order Logic Generation and Weight Learning Method in Markov Logic Network Using Association Analysis (연관분석을 이용한 마코프 논리네트워크의 1차 논리 공식 생성과 가중치 학습방법)

  • Ahn, Gil-Seung;Hur, Sun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.38 no.1
    • /
    • pp.74-82
    • /
    • 2015
  • Two key challenges in statistical relational learning are uncertainty and complexity. Standard frameworks for handling uncertainty are probability and first-order logic respectively. A Markov logic network (MLN) is a first-order knowledge base with weights attached to each formula and is suitable for classification of dataset which have variables correlated with each other. But we need domain knowledge to construct first-order logics and a computational complexity problem arises when calculating weights of first-order logics. To overcome these problems we suggest a method to generate first-order logics and learn weights using association analysis in this study.

Stock Trading Model using Portfolio Optimization and Forecasting Stock Price Movement (포트폴리오 최적화와 주가예측을 이용한 투자 모형)

  • Park, Kanghee;Shin, Hyunjung
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.39 no.6
    • /
    • pp.535-545
    • /
    • 2013
  • The goal of stock investment is earning high rate or return with stability. To accomplish this goal, using a portfolio that distributes stocks with high rate of return with less variability and a stock price prediction model with high accuracy is required. In this paper, three methods are suggested to require these conditions. First of all, in portfolio re-balance part, Max-Return and Min-Risk (MRMR) model is suggested to earn the largest rate of return with stability. Secondly, Entering/Leaving Rule (E/L) is suggested to upgrade portfolio when particular stock's rate of return is low. Finally, to use outstanding stock price prediction model, a model based on Semi-Supervised Learning (SSL) which was suggested in last research was applied. The suggested methods were validated and applied on stocks which are listed in KOSPI200 from January 2007 to August 2008.

Automatic and objective gradation of 114 183 terrorist attacks using a machine learning approach

  • Chi, Wanle;Du, Yihong
    • ETRI Journal
    • /
    • v.43 no.4
    • /
    • pp.694-701
    • /
    • 2021
  • Catastrophic events cause casualties, damage property, and lead to huge social impacts. To build common standards and facilitate international communications regarding disasters, the relevant authorities in social management rank them in subjectively imposed terms such as direct economic losses and loss of life. Terrorist attacks involving uncertain human factors, which are roughly graded based on the rule of property damage, are even more difficult to interpret and assess. In this paper, we collected 114 183 open-source records of terrorist attacks and used a machine learning method to grade them synthetically in an automatic and objective way. No subjective claims or personal preferences were involved in the grading, and each derived common factor contains the comprehensive and rich information of many variables. Our work presents a new automatic ranking approach and is suitable for a broad range of gradation problems. Furthermore, we can use this model to grade all such attacks globally and visualize them to provide new insights.