• Title/Summary/Keyword: Rule-Based Classification

Search Result 330, Processing Time 0.023 seconds

On EM Algorithm For Discrete Classification With Bahadur Model: Unknown Prior Case

  • Kim, Hea-Jung;Jung, Hun-Jo
    • Journal of the Korean Statistical Society
    • /
    • v.23 no.1
    • /
    • pp.63-78
    • /
    • 1994
  • For discrimination with binary variables, reformulated full and first order Bahadur model with incomplete observations are presented. This allows prior probabilities associated with multiple population to be estimated for the sample-based classification rule. The EM algorithm is adopted to provided the maximum likelihood estimates of the parameters of interest. Some experiences with the models are evaluated and discussed.

  • PDF

Analysis of Network Traffic using Classification and Association Rule (데이터 마이닝의 분류화와 연관 규칙을 이용한 네트워크 트래픽 분석)

  • 이창언;김응모
    • Journal of the Korea Society for Simulation
    • /
    • v.11 no.4
    • /
    • pp.15-23
    • /
    • 2002
  • As recently the network environment and application services have been more complex and diverse, there has. In this paper we introduce a scheme the extract useful information for network management by analyzing traffic data in user login file. For this purpose we use classification and association rule based on episode concept in data mining. Since login data has inherently time series characterization, convertible data mining algorithms cannot directly applied. We generate virtual transaction, classify transactions above threshold value in time window, and simulate the classification algorithm.

  • PDF

A Study on the Product Information Interoperability between Heterogeneous Systems using Rule-based Reasoning (규칙 기반 추론을 이용한 이기종 시스템간의 제품 정보 상호운용에 관한 연구)

  • Lee, Sang-Seok;Yang, Tae-Ho;Lee, Duk-Hee;Oh, Seog-Chan;Noh, Sang-Do
    • IE interfaces
    • /
    • v.24 no.3
    • /
    • pp.248-257
    • /
    • 2011
  • The amount of Meta-data to be managed increases with development of information technology. However, when trying to integrate and share product information of heterogeneous systems within or between companies, sharing of information is impossible if product information classification systems are different. Due to the situation mentioned above, engineers judge the product information classification system and maps corresponding Meta-data for document-based sharing. Judging exponentially increasing amount of data by engineers and sharing product information using documents create great amount of time delay and errors in data handling. Therefore, construction of a system for integrated management and interoperability between product information based on semantic information similar to engineer's judgment is required. This paper proposes a methodology and necessity of a system for interoperability of product information based on semantic web, and also designs a system to integrate heterogeneous systems with different product information using rule based reasoning. This paper also suggests a system base for interoperability and integration of product information between heterogeneous systems by integrating the product information classification system semantically.

A Comparison of Artificial Neural Networks and Statistical Pattern Recognition Methods for Rotation Machine Condition Classification (회전기계 고장 진단에 적용한 인공 신경회로망과 통계적 패턴 인식 기법의 비교 연구)

  • Kim, Chang-Gu;Park, Kwang-Ho;Kee, Chang-Doo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.12
    • /
    • pp.119-125
    • /
    • 1999
  • This paper gives an overview of the various approaches to designing statistical pattern recognition scheme based on Bayes discrimination rule and the artificial neural networks for rotating machine condition classification. Concerning to Bayes discrimination rule, this paper contains the linear discrimination rule applied to classification into several multivariate normal distributions with common covariance matrices, the quadratic discrimination rule under different covariance matrices. Also we discribes k-nearest neighbor method to directly estimate a posterior probability of each class. Five features are extracted in time domain vibration signals. Employing these five features, statistical pattern classifier and neural networks have been established to detect defects on rotating machine. Four different cases of rotation machine were observed. The effects of k number and neural networks structures on monitoring performance have also been investigated. For the comparison of diagnosis performance of these two method, their recognition success rates are calculated form the test data. The result of experiment which classifies the rotating machine conditions using each method presents that the neural networks shows the highest recognition rate.

  • PDF

The Construction Methodology of a Rule-based Expert System using CART-based Decision Tree Method (CART 알고리즘 기반의 의사결정트리 기법을 이용한 규칙기반 전문가 시스템 구축 방법론)

  • Ko, Yun-Seok
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.6
    • /
    • pp.849-854
    • /
    • 2011
  • To minimize the spreading effect from the events of the system, a rule-based expert system is very effective. However, because the events of the large-scale system are diverse and the load condition is very variable, it is very difficult to construct the rule-based expert system. To solve this problem, this paper studies a methodology which constructs a rule-based expert system by applying a CART(Classification and Regression Trees) algorithm based decision tree determination method to event case examples.

A Packet Classification Algorithm Using Bloom Filter Pre-Searching on Area-based Quad-Trie (영역 분할 사분 트라이에 블룸 필터 선 검색을 사용한 패킷 분류 알고리즘)

  • Byun, Hayoung;Lim, Hyesook
    • Journal of KIISE
    • /
    • v.42 no.8
    • /
    • pp.961-971
    • /
    • 2015
  • As a representative area-decomposed algorithm, an area-based quad-trie (AQT) has an issue of search performance. The search procedure must continue to follow the path to its end, due to the possibility of the higher priority-matching rule, even though a matching rule is encountered in a node. A leaf-pushing AQT improves the search performance of the AQT by making a single rule node exist in each search path. This paper proposes a new algorithm to further improve the search performance of the leaf-pushing AQT. The proposed algorithm implements a leaf-pushing AQT using a hash table and an on-chip Bloom filter. In the proposed algorithm, by sequentially querying the Bloom filter, the level of the rule node in the leaf-pushing AQT is identified first. After this procedure, the rule database, which is usually stored in an off-chip memory, is accessed. Simulation results show that packet classification can be performed through a single hash table access using a reasonable sized Bloom filter. The proposed algorithm is compared with existing algorithms in terms of the memory requirement and the search performance.

Genetics-Based Machine Learning for Generating Classification Rule in Data Mining (데이터 마이닝의 분류 규칙 발견을 위한 유전자알고리즘 학습방법)

  • 김대희;박상호
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2001.11a
    • /
    • pp.429-434
    • /
    • 2001
  • 데이터(data)치 홍수와 정보의 빈곤이라는 환경에 처한 지금, 정보기술을 이용하여 데이터를 여과하고, 분석하며, 결과를 해석하는 자동화 된 데이터 분석 방안에 높은 관심을 가지게 되었으며, 데이터 마이닝(Data Mining))은 이러한 요구를 충족시키는 정보기술의 활용방법이다. 특히 데이터 마이닝(Data Mining)의 분류(Classification) 방법은 중요한 분야가 되고 있다. 분류 작업의 핵심은 어떻게 적당한 결정규칙(decision rule)을 정의하느냐에 달려 있는데 이를 위해 학습능력을 가지고 있는 알고리즘이 필요하다. 본 논문에서는 유전자 알고리즘(Genetic Algorithm)을 기반으로 하는 강건한 학습방법을 제시했으며, 이러한 학습을 통해 데이터 마이닝(Data Mining)의 분류시스템을 제안하였다.

  • PDF

Study of Temporal Data Mining for Transformer Load Pattern Analysis (변압기 부하패턴 분석을 위한 시간 데이터마이닝 연구)

  • Shin, Jin-Ho;Yi, Bong-Jae;Kim, Young-Il;Lee, Heon-Gyu;Ryu, Keun-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.11
    • /
    • pp.1916-1921
    • /
    • 2008
  • This paper presents the temporal classification method based on data mining techniques for discovering knowledge from measured load patterns of distribution transformers. Since the power load patterns have time-varying characteristics and very different patterns according to the hour, time, day and week and so on, it gives rise to the uninformative results if only traditional data mining is used. Therefore, we propose a temporal classification rule for analyzing and forecasting transformer load patterns. The main tasks include the load pattern mining framework and the calendar-based expression using temporal association rule and 3-dimensional cube mining to discover load patterns in multiple time granularities.

A Classification Techniques For Quality Improvement

  • Jichao, Xu;Yumin, Liu;Li, Zhang
    • International Journal of Quality Innovation
    • /
    • v.2 no.2
    • /
    • pp.24-33
    • /
    • 2001
  • As we know, the quality of processes is technically depicted by variation, a product or process with the best quality must naturally require the variation as less as possible. The variation is usually reduced with many ways, say, by adjusting parameters settings under robust design with many turns expensive experiments. So ones are trying to reach the robustness by detecting cheap and simple methods. In this paper, a both practical and simple technique for quality improvement, namely reducing the variation, by data classification is studied. First, all possible system factors are included, which may dominate the variation law. And then we make use of the past observations and their classification as well as boxplot charts to find out the internal rule between the variation and the system factor. Next, adjust the location of the system factor according to the rule so that the variation could, to some extent, be lessened. Finally, two typical quality improvement cases based on data classification are presented.

  • PDF

Identifying Core Robot Technologies by Analyzing Patent Co-classification Information

  • Jeon, Jeonghwan;Suh, Yongyoon;Koh, Jinhwan;Kim, Chulhyun;Lee, Sanghoon
    • Asian Journal of Innovation and Policy
    • /
    • v.8 no.1
    • /
    • pp.73-96
    • /
    • 2019
  • This study suggests a new approach for identifying core robot tech-nologies based on technological cross-impact. Specifically, the approach applies data mining techniques and multi-criteria decision-making methods to the co-classification information of registered patents on the robots. First, a cross-impact matrix is constructed with the confidence values by applying association rule mining (ARM) to the co-classification information of patents. Analytic network process (ANP) is applied to the co-classification frequency matrix for deriving weights of each robot technology. Then, a technique for order performance by similarity to ideal solution (TOPSIS) is employed to the derived cross-impact matrix and weights for identifying core robot technologies from the overall cross-impact perspective. It is expected that the proposed approach could help robot technology managers to formulate strategy and policy for technology planning of robot area.