• Title/Summary/Keyword: Rudder roll control system

Search Result 18, Processing Time 0.025 seconds

Design of The Autopilot System of vessel using Fuzzy Algorithm (퍼지제어 알고리즘을 이용한 선박의 자율운항 시스템 설계)

  • 이민수;추연규;이광석;김현덕;박연식
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.10a
    • /
    • pp.801-804
    • /
    • 2003
  • The autopilot system of vessel is proposed to take service safety sorority, to elevate service efficiency, to decrease labor and to improve working environment. Ultimate purpose of it is to minimize the number of crew by guaranteeing economical efficiency of shipping service. Recently, the research is being achieving to compensate various nonlinear parameters of vessel and apply it is course keeping control, track keeping control, roll-rudder stabilization, dynamic ship positioning and automatic mooring control etc. using optimizing control technique. Relation between rudder angle controlled by steering machine of vessel and ship-heading angle, and load condition of ship are nonlinear, which affect various parameters of shipping service. The speed and direction of waves, velocity and quantity of wind, which also cause the non-linearity of it. Therefore the autopilot system of ship requires the robust control algorithm can overcome various non-linearity. On this paper, we design the autopilot system of ship, which overcome nonlinear parameters and disturbance of it using Fuzzy Algorithm, evaluate the proposed algorithm and its excellence through simulation

  • PDF

A New Approach to Structure of Aerodynamic Fin Control System for STT Missiles

  • Song, Chan-Ho;Lee, Yong-In;Kim, Seung-Hwan;Kim, Pil-Seong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.537-541
    • /
    • 2003
  • In order to control the missiles by aerodynamics, control surfaces sometime called fins are used. Deflection angles of these fins are the right control variables of the aerodynamics, but aerodynamicists prefer to use analytic variables called aileron, elevator and rudder instead of these physical variables, because these three analytic variables dominantly influence on the roll, pitch and yaw channels of the missile maneuver, respectively, and each can be assumed a linear combination of four fin deflection angles. On that basis, roll, pitch and yaw autopilots for controlling the attitudes or lateral acceleration of the missile are designed, and as a consequence outputs of each autopilot are aileron, elevator and rudder commands, respectively. In the existing fin control scheme for the typical tail-fin controlled cruciform missiles, firstly these outputs are distributed to four fin defection commands, and after that four fins are actuated by fin controllers so that their deflections follow the commands. This paper shows that performance of such control schemes can be degraded significantly when fin actuators have certain physical constraints such as slew rate, voltage or current limit, uncertainty of actuator dynamics, and so on, and propose a new control scheme which alleviates such problems. This scheme can be widely applied to various fin actuation systems. But in this paper, for convenience, tail-fin controlled cruciform missile is taken as an example, and it is shown that a proposed control scheme gives better performance than the existing one.

  • PDF

Design of Vessel Autopilot System using Fuzzy Control Algorithm (퍼지제어 알고리지즘을 이용한 선박의 자율운항 시스템 설계)

  • Choo, Yeon-Gyu;Lee, Kwang-Seok;Kim, Hyun-Deok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.06a
    • /
    • pp.724-727
    • /
    • 2007
  • 선박 운항 자동화 시스템은 선내 노동력 감소, 작업 환경 개선, 운항 안전성 확보 및 운항 능률의 향상을 목표로 하며, 궁극적으로는 운항 경제성확보를 위한 승선 인원의 최소화에 그 목적이 있다. 최근에는 적응 제어방법 등을 응용하여 선박의 비선형성을 보상하여 선박의 회두각 유지제어(Course Keeping Control), 항로 추적제어(Track Keeping Control), 롤-타각제어(Roll-Rudder Stabilization), 선박 위치제어(Dynamic Ship Positioning), 선박자동 접이안(Automatic Mooring Control) 등에 관한 연구를 수행하고 있으며 실제의 선박으로 대상으로 응용연구가 진행 중이다. 선박은 Steering Machine에 의해 조정되는 Rudder angle과 선박의 회두각의 관계는 비선형적이며, 선박의 Load Condition은 선박의 Parameter에 영향을 주는 비선형적인 요소로서 작용한다. 또한 외란요소인 파도의 유속(流速)과 방향, 풍속과 풍량 등이 비선형적인 형태로 작용하므로 선박의 운항을 힘들게 하는 요인이 된다. 따라서 선박의 운항시스템에는 비선형성을 극복할 수 있는 강인한 제어 알고리즘을 요구한다. 본 논문에서는 퍼지 알고리즘을 이용하여 선박의 비선형적인 요인 및 외란을 극복할 수 있는 선박의 자율운항 시스템을 설계하고 시뮬레이션을 통해 그 결과를 살펴보았다.

  • PDF

A Study on the Design and Validation of Automatic Pitch Rocker System for Altitude, Speed and Deep Stall Recovery (항공기의 고도, 속도 및 깊은 실속의 회복을 위한 자동회복장치 설계 및 검증에 관한 연구)

  • Kim, Chong-Sup
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.2
    • /
    • pp.240-248
    • /
    • 2009
  • Modem version of supersonic jet fighter aircraft must have been guaranteed appropriate controllability and stability in HAoA(High Angle of Attack). The HAoA flight control law have two parts, one is control law of departure prevention and the other is control law of departure recovery support. The control laws of departure prevention for advanced jet trainer consist of HAoA limiter, roll command limiter and rudder fader. The control laws of departure recovery support are consist of yaw-rate limiter and MPO(Manual Pitch Override) mode. The guideline of pitch rocking using MPO mode is simple, but operating skill of pitch rocking is very difficult by the pilot with inexperience of departure situation. Therefore, automatic deep stall recovery system is necessary. The system called the "Automatic Pitch Rocker System" or APRS, provided a pilot initiated automatic maneuver capable of an aircraft recoveries in situations of deep stall, speed and altitude. This paper addresses the design and validation for APRS to recovery of an deep stall without manual pitch rocking by the pilot. Also, this system is designed to recovery of speed, attitude and altitude after deep stall recovery using ATCS (Automatic Thrust Control System) and autopilot. Finally, this system is verified by real-time pilot evaluation using HQS (Handling Quality Simulator).

Interval Type-2 Fuzzy Logic Control System of Flight Longitudinal Motion (항공기 종 제어를 위한 Interval Type-2 퍼지논리 제어시스템)

  • Cho, Young-Hwan;Lee, Hong-Gi;Jeon, Hong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.2
    • /
    • pp.168-173
    • /
    • 2015
  • The flight control of aircraft, which has nonlinear time-varying dynamic characteristics depending on the various and unexpected external conditions, can be performed on two motions: longitudinal motion and lateral motion. In the longitudinal motion control of aircraft, pitch and trust are major control parameters and roll and yaw are control ones in the lateral motion control. Until now, a number of efficient and reliable control schemes that can guarantee the stability and maneuverability of the aircraft have been developed. Recently, the intelligent flight control scheme, which differs from the conventional control strategy requiring the various and complicate procedures such as the wind tunnel and environmental experiments, has attracted attention. In this paper, an intelligent longitudinal control scheme has been proposed utilizing Interval Type-2 fuzzy logic which can be recognized as a representative intelligent control methodology. The results will be verified through computer simulation with a F-4 jet fighter.

Reconfigurable Flight Control Design for the Complex Damaged Blended Wing Body Aircraft

  • Ahn, Jongmin;Kim, Kijoon;Kim, Seungkeun;Suk, Jinyoung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.2
    • /
    • pp.290-299
    • /
    • 2017
  • Reconfigurable flight control using various kinds of adaptive control methods has been studied since the 1970s to enhance the survivability of aircraft in case of severe in-flight failure. Early studies were mainly focused on the failure of actuators. Recently, studies of reconfigurable flight controls that can accommodate complex damage (partial wing and tail loss) in conventional aircraft were reported. However, the partial wing loss effects on the aerodynamics of conventional type aircraft are quite different to those of BWB(blended wing body) aircraft. In this paper, a reconfigurable flight control algorithm was designed using a direct model reference adaptive method to overcome the instability caused by a complex damage of a BWB aircraft. A model reference adaptive control was incorporated into the inner loop rate control system enhancing the performance of the baseline control to cope with abrupt loss of stability. Gains of the model reference adaptive control were polled out using the Liapunov's stability theorem. Outer loop attitude autopilot was designed to manage roll and pitch of the BWB UAV as well. A 6-DOF dynamic model was built-up, where the normal flight can be made to switch to the damaged state abruptly reflecting the possible real flight situation. 22% of right wing loss as well as 25% loss for both vertical tail and rudder control surface were considered in this study. Static aerodynamic coefficients were obtained via wind tunnel test. Numerical simulations were conducted to demonstrate the performance of the reconfigurable flight control system.

A Study on Prevention Control Law of Aircraft Departure at High Angle of Attack (고받음각에서 항공기 이탈 방지를 위한 제어법칙에 관한 연구)

  • Kim, Chong-Sup;Hwang, Byung-Moon;Jung, Dae-Hee;Kim, Seung-Jun;Bae, Myung-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.7
    • /
    • pp.85-91
    • /
    • 2005
  • Supersonic jet fighter aircraft must have been guaranteed appropriate for controllability and stability in HAoA(High Angle of Attack) region. Limit value of aircraft enter the deep stall at HAoA is related to problem of aircraft configuration design. But, In order to guarantee the aircraft safety in HAoA, control law is designed using digital Fly-By-Wire flight control system in modern versions of supersonic jet fighter aircraft. Also, In order to recovery if aircraft enter the deep stall or spin, anti-spin control law and MPO(Manual Pitch Override) mode is designed. AoA limiter and MPO is designed in longitudinal axis and HAoA departure prevention logic, roll command limiter, rudder fader and anti-spin logic is designed in lateral-directional axis. In this paper, we introduce the T-50 HAoA flight control law and propose that aircraft stability and adequate of these control law from HAoA flight test.

A Study on the Design and Validation of Automatic Pitch Rocker for the Aircraft Deep Stall Recovery (항공기의 실속 회복을 위한 자동 회복 장치 설계 및 검증에 관한 연구)

  • Hahn, Seong-Ho;Hwang, Byung-Moon;Lee, Young-Ho;Lee, Dong-Kyu;Ahn, Sung-Jun;Kim, Chong-Sup
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.1
    • /
    • pp.6-14
    • /
    • 2007
  • Modem version of supersonic jet fighter aircraft must have been guaranteed appropriate controllability and stability in HAoA(High Angle of Attack). Limit value of aircraft entering into the departure in HAoA is related to aircraft configuration design. But, the control law such as AoA and yaw-rate limiter is implemented in digital Fly-By-Wire flight control system of supersonic jet fighter to guarantee the aircraft's safety in HAoA. The HAoA flight control law have two parts, one is control law of departure prevention and the other is control law of departure recovery support. The control laws of departure prevention for advanced jet trainer consist AoA limiter, roll command limiter and rudder fader. The control laws of departure recovery support are consist yaw-rate limiter and MPO(Manual Pitch Override) mode. The guideline of pitch rocking using MPO mode is simple, but operating skill of pitch rocking is very difficult by the pilot with inexperience of departure situation. This paper addresses the design and validation of APR(Automatic Pitch Rocker) control law instead of MPO in order to automatic recovery without manual pitch rocking by the pilot. And, recovery characteristic with APR verifies by the nonlinear analysis and pilot evaluation.