• 제목/요약/키워드: Rudder horn

검색결과 30건 처리시간 0.021초

타의 종류에 따른 컨테이너선의 조종성능 특성 연구 (Experimental Study on the Variation of Maneuvering Characteristics of Container Ship with Rudder Type)

  • 김연규;김선영;김성표;이석원
    • 대한조선학회논문집
    • /
    • 제41권5호
    • /
    • pp.28-33
    • /
    • 2004
  • Generally Horn-type rudders have been used for single propeller and single rudder system. The reason is that the rudder torques of Horn-type rudder are smaller than those of Spade rudder with same lift force. But it is found that the rudder cavitation occurs on a Horn-type rudder of fast container ship. In this paper the comparison results of Horn-type and Spade rudders are described. HPMM tests are carried out to compare the effects of two rudder types on the maneuverability of a ship. It is shown that the maneuvering performance of a ship equipped with Horn-type rudder is better than that equipped with Spade rudder by comparing the test results and maneuvering coefficients at scantling condition. The reason is that the movable part area of Horn-type rudder is about 14% larger than that of Spade rudder with same total area. And the rudder torque of Spade rudder is greater than that of Horn rudder. At ballast condition, however, the effect of rudder type is negligible.

Rudder Horn 최적화 설계 방안 (Optimizing Design for Rudder Horn)

  • 박성근
    • 대한조선학회 특별논문집
    • /
    • 대한조선학회 2006년도 특별논문집
    • /
    • pp.77-80
    • /
    • 2006
  • In recent booming up of the ship building market, the supplying of large scale casting is difficult to keep the delivery schedule for ship yard because of the restrict manufacturer in Korea. And also, it is main cause to rise-up the cost of castings. This paper describes the outline of guidance of optimizing design for Rudder Horn Casting to reduce the risk of the delivery problem to ship yard.

  • PDF

선체-프로펠러와 고양력 혼타의 상호작용에 관한 연구 (A Study on the Interaction between Hull-Propeller and a High-Lifting Horn-type Rudder)

  • 김두동;이영길
    • 대한조선학회논문집
    • /
    • 제48권4호
    • /
    • pp.346-356
    • /
    • 2011
  • Rudder is to be located in extremely complicated flows generated and disturbed behind a hull and a propeller in operation. In order to estimate the rudder efficiency, it is quite important to investigate the disturbed flows due to the interaction under the hull-propeller and rudder condition. The purpose of the present research is to investigate the interaction between the hull-propeller and a high-lifting horn-type rudder through both numerical computations and experiments. A horn-type rudder implementing the Coanda effect of USB (Upper Surface Blowing) type is selected for its high efficiency of lifting force, and a 1/85 scaled model of 47K PC(Product Carrier) is manufactured for the purpose of the model test. The forces acting on the rudder during the experiment are measured using a three-component force gauge. Both cases are investigated in the hull-propeller-rudder condition and rudder open-water condition, which confirms that the flows generated under the former condition is considerably different from that of the latter condition.

2차원 혼 타 단면의 간극유동 특성에 대한 연구 (Characteristics of Gap Flow of a 2-Dimensional Horn-Type Rudder Section)

  • 최정은;정석호
    • 대한조선학회논문집
    • /
    • 제44권2호
    • /
    • pp.101-110
    • /
    • 2007
  • Recently, rudder erosion due to cavitation frequently has occurred at large high speed container carriers. Especially, in the case of a horn-type rudder, the rudder erosion is severe around a gap. The gap-flow characteristics are investigated through a computational method to understand the effects of a gap on the cavitation and rudder efficiency. A viscous flow theory utilizing a cavitation model is applied to calculate the flow around idealized 2-dimensional rudder sections in a full scale. The effects of gap clearance and flow-control projection are also investigated. From the computational results, the mass flow rate through a gap is found to be one of the important parameters to affect the cavitation and rudder efficiency.

Flap 타를 채택한 선박의 조종성능 특성 (Maneuvering Performances of a Ship with Flap Rudder)

  • 이호영;신상성;박홍식;박종환
    • 한국해양환경ㆍ에너지학회지
    • /
    • 제4권1호
    • /
    • pp.70-74
    • /
    • 2001
  • 본 논문에서는 특수타를 채용한 선박과 일반타를 장착한 선박에 대하여 구속모형시험을 통하여 비교 연구를 실시하였다. 구속모형시험은 일반타가 장착된 경우와 특수타가 장착된 경우에 대하여 수행되었고, 조종수학 모델링은 Abkowitz 수학 모델을 통하여 유체력 미계수를 구하여 조종운동을 시뮬레이션하였다. 연구 결과에 의하면 플랩(Flap) 타를 채택한 경우에 선회성능은 아주 향상되는 것을 확인하였다.

  • PDF

캐비테이션 감소를 위한 혼타의 형상 연구 (A Study on the Rudder Shapes for the Suppression of Cavitation around a Horn-type Rudder)

  • 박경령;이영길
    • 대한조선학회논문집
    • /
    • 제47권4호
    • /
    • pp.553-564
    • /
    • 2010
  • This paper studies on the rudder shapes for the suppression of the cavitation around a horn-type rudder. To improve the problems due to cavitation, there have been several studies. However, these some studies are recognized as incomplete ways to suppress the rudder cavitation. In this study, the section shapes to suppress the cavitation phenomena are determined by moving the location of maximum thickness for reducing the curvature variation and changing the radius of leading edge. Also, in the pintle part, the curvature radius of the inlet outlet edge of rudder plate is changed. During the design of rudder shape, two-dimensional numerical simulations are firstly performed because those offer some advantages with that cavitation phenomena becomes predictable for a short time, and then the three-dimensional numerical simulations are performed to confirm the determination. The time mean distribution of the propeller slipstream is imposed on the inlet boundary condition. As some results, this paper shows the effects reducing the range of the occurrence of cavitation, and suggests the references on the design of a horn-type rudder for the suppression of cavitation phenomena.

Horn-type Rudder 주위의 2 차원 난류유동 해석 (Analysis of Two-Dimensional Turbulent Flow around the Horn-type Rudder)

  • 정남균
    • 대한기계학회논문집B
    • /
    • 제33권11호
    • /
    • pp.924-931
    • /
    • 2009
  • The two-dimensional turbulent flow around the horn-type rudder has been examined in the present study by using the commercial code FLUENT. The standard ${\kappa}-{\epsilon}$ model is used as a closure relationship. The geometry of horn rudder is based on the NACA 0020 airfoil. The simulations for various angle attack (${\alpha}$) and yaw angle(${\delta}$) are carried out. The effect of Reynolds number is also investigated in this study. The cavitation is more possible when the yaw angle is $6^{\circ}$ and it is more serious as Reynolds number increases.

Performance analysis of a horn-type rudder implementing the Coanda effect

  • Seo, Dae-Won;Oh, Jungkeun;Jang, Jinho
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제9권2호
    • /
    • pp.177-184
    • /
    • 2017
  • The Coanda effect is the phenomenon of a fluid jet to stay attached to a curved surface; when a jet stream is applied tangentially to a convex surface, lift force is generated by increase in the circulation. The Coanda effect has great potential to be applied practically applied to marine hydrodynamics where various lifting surfaces are being widely used to control the behavior of ships and offshore structures. In the present study, Numerical simulations and corresponding experiments were performed to ascertain the applicability of the Coanda effect to a horn-type rudder. It was found that the Coanda jet increases the lift coefficient of the rudder by as much as 52% at a jet momentum coefficient of 0.1 and rudder angle of $10^{\circ}$.

선미 후류에서 작동하는 혼타의 압력분포에 관한 연구 (A Study on the Pressure Distributions of Horn Rudder Operating in Ship's Wake)

  • 공도성;한재문;유재문
    • 대한조선학회논문집
    • /
    • 제39권2호
    • /
    • pp.1-10
    • /
    • 2002
  • 선체-프로펠러-타의 상호작용 해석을 반복계산에 의해 수행하였다. 계측된 공칭속도를 입력자료로 하고 보오텍스 링 이론을 이용하여 유효속도를 계산함으로써 선체와 프로펠러사이의 상호작용을 고려하였고, 계산된 유효속도를 입력자료로 하여 프로펠러-타 상호작용을 계산할 수 있는 포텐셜 기저 패널법을 개발하였다. 프로펠러에 의해 타에 유기되는 속도와 반대로 타에 의해 프로펠러에 유기되는 속도는 수렴된 해가 얻어질 때까지 반복 계산하여 타 주위의 정상유동 해석을 수행하였다. 이와 함께 삼성중공업의 대형 캐비테이션 터널에서 L.D.V를 사용하여 프로펠러 및 타 주위의 유동장을 계측하였고 수치계산 결과와 비교하였다. 실선에 설치되고 있는 혼 타주위의 유동장 계산을 위해 gap flow 모델을 적용하였고, 여러 가지 타각에 대한 수치계산을 수행하여 대형캐비테이션 터널에서 계측된 타 표면에서의 압력과 비교하였으며, 계산된 표면 압력 치는 실험 값과 비교적 일치되는 만족스러운 결과를 얻었다.

Semi-spade 타의 간극 캐비테이션에 대한 실험적 연구 (Experimental Investigation on the Gap Cavitation of Semi-spade Rudder)

  • 백부근;김경열;안종우;김용수;김성표;박제준
    • 대한조선학회논문집
    • /
    • 제43권4호
    • /
    • pp.422-430
    • /
    • 2006
  • The horn and movable parts around the gap of the conventional semi-spade rudder are visualized by high speed CCD camera with the frame rate of 4000 fps (frame per second) to study the unsteady cavity pattern on the rudder surface and gap. In addition, the pressure measurements are conducted on the rudder surface and inside the gap to find out the characteristics of the flow behavior. The rudder without propeller wake is tested at the range of $1.0{\leq}{\sigma}_v\;1.6$ and at the rudder deflection angle of $-8{\leq}{\theta}{\leq}10^{\circ}$. The time resolved cavity images are captured and show strong cavitation around the rudder gap in all deflection angles. As the deflection angle gets larger, the flow separated from the horn surface increases the strength of cavitation. The accelerated flow along the horn decreases its pressure and the separated flow from the horn increases the pressure abruptly. The pressure distribution inside the gap reveals the flow moving from the pressure to suction side. In the negative deflection angle, the turning area on the movable part initiates the flow separation and cavitation on it.