• Title/Summary/Keyword: Rudder Control System

Search Result 84, Processing Time 0.029 seconds

A Study on the High Lifting Device Equipped with the Trailing Edge Rotor for the Enhancement of Circulation Control (뒷날에 붙인 회전자로 순환유동을 강화하는 날개장치의 성능 연구)

  • Oh, Jung-Keun;Kim, Hyo-Chul
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.4
    • /
    • pp.533-542
    • /
    • 2010
  • For a long times it has been believed that the Magnus effect of the rotating cylinder could be utilized for the lifting devices applicable to marine practices. It has been reported that the rotating cylinder installed on upper deck of commercial vessel could play a energy saving role however the idea might be applicable in a very rare case in ship building practices. In this study special high lift rudder system equipped with the trailing edge rotor has been suggested in correspondence with the increasing requirement of greater rudder force. Through the numerical simulation it is cleared that the trailing edge rotor could play a role in enhancement of circulation and refinement of boundary layer of the rudder system. At the same time it is found out that the lift force of the rudder system without rotation of trailing edge rotor could be doubled when the circumferential velocity of the trailing edge rotor is equal to twice of the inflow velocity.

A Study on Rudder-Roll Stabilization System Design for Ship with Varying Ship Speed (선박 주행속도 변화를 고려한 Rudder-Roll Stabilization System 설계에 관한 연구)

  • Kim, Young-Bok;Chea, Gyu-Hoon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.5
    • /
    • pp.363-372
    • /
    • 2002
  • In ship operation, the roll motions can seriously degrade the performance of mechanical and personnel effectiveness. So many studies for the roll stabilization system design have been performed and good results have been achieved. In many studies, the stabilizing fins are used. Recently rudders, which have been extensively modified, have been used exclusively to stabilize the roll. But, in the roll stabilization control system, the control performance is very sensitive to the ship speed. So, we can see that it is important to consider the ship speed in the rudder roll control system design. The gain-scheduling control technique is very useful in the control problem incorporating time varying parameters which can be measured in real time. Based on this fact, in this paper we examine the;$H_{\infty}$-Gain Scheduling control design technique. Therefore, we assume that a parameter, the ship speed which can be estimated in real time, is varying and apply the gain-scheduling control technique to design the course keeping and anti-rolling control system far a ship. In this control system, the controller dynamics is adjusted in real-time according to time-varying plant parameters. The simulation result shows that the proposed control strategy is shown to be useful for cases when the ship speed is varying and robust to disturbances like wind and wave.

Anti-Windup Controller Design for the Ship with the Rudder Saturation (Rudder 엑츄에이터 포화특성을 고려한 Anti-Windup 제어계의 설계)

  • 김영복;최명수
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.4
    • /
    • pp.61-69
    • /
    • 2002
  • In the actual control systems, there exist many kinds of restrictions or nonlinearities. However, due to the nonlinearities in actuators and sensors, the designed controller may not be applicable in some practical situations. One such nonlinearity is amplitude saturation in actuators. Although sometimes it may be ignored, in other cases failure to consider actuator saturation may severely degrade closed-loop system performance and even lead to instability. On the other hand, limiting the controller gain to avoid saturation sacrifices control effort and may lead to loss of performance. Consequently, in some cases, the actuator saturation must be explicitly taken into account to ensure desired performance. However, in this paper, an anti-windup control system design method is introduced to suppress the windup due to the amplitude saturation of the actuator. The proposed control system has very simple design process and guarantees the good control performance. The validity of the proposed control system will be shown by comparing with the results of a reported paper.

Design the Autopilot System of using GA Algorithm

  • Lee, Sang-Min;Choo, Yeon-Gyu;Lim, Young-Do
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.699-703
    • /
    • 2004
  • The autopilot system targets decreasing labor, working environment, service safety security and elevation of service efficiency. Ultimate purpose is minimizing number of crew for guarantee economical efficiency of shipping service. Recently, being achieving research about Course Keeping Control, Track Keeping Control, Roll-Rudder Stabilization, Dynamic ship Positioning and Automatic Mooring Control etc. which compensate nonlinear characteristic using optimizing control technique. And application research is progressing using real ship on actual field. Relation of Rudder angle which adjusted by Steering Machine and ship-heading angle are non-linear. And, Load Condition of ship acts as non-linear element that influence to Parameter of ship. Also, because the speed of a current and direction of waves, velocity and quantity of wind etc. that id disturbance act in non-linear form, become factor who make service of shipping painfully. Therefore, service system of shipping requires robust control algorithm that can overcome nonlinearity. In this paper, Using GA algorithm,design autopilot system of ship that could overcome the non-linear factor of ship and disturbance and examined result through simulation.

  • PDF

Dynamics Analysis of a Small Training Boat ant Its Optimal Control

  • Nakatani, Toshihiko;End, Makoto;Yamamoto, Keiichiro;Kanda, Taishi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.342-345
    • /
    • 2005
  • This paper describes dynamics analysis of a small training boat and a new type of ship's autopilot not only to keep her course but also to reduce her roll motion. Firstly, statistical analysis through multi-variate auto regressive model is carried out using the real data collected from the sea trial on an actual small training boat Sazanami after the navigational system of the boat was upgraded. It is shown that the roll motion is strongly influenced by the rudder motion and it is suggested that there is a possibility of reducing the roll motion by controlling the rudder order properly. Based on this observation, a new type of ship's autopilot that takes the roll motion into account is designed using the muti-variate modern control theory. Lastly, digital simulations by white noise are carried out in order to evaluate the proposed system and a typical result is demonstrated. As results of simulations, the proposed autopilot had good performance compared with the original data.

  • PDF

An Experimental Study on Flow Characteristic around a Flap rudder (플랩러더 주위의 유동특성에 관한 실험적 연구)

  • Gim, Ok-Sok;Cho, Dae-Hwan;Lee, Gyoung-Woo;Ko, Jae-Yong
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2006.11a
    • /
    • pp.277-282
    • /
    • 2006
  • The purpose in having a control surface on a ship is to control the motion of the ship. The control surface may be composed entirely of a single movable surface or of a combination of fixed and movable portion A control surface has one sole function to perform in meeting its purpose, and that is to develop a control force in consequence of its orientation and movement relative to the water. The forces and moments generated as a result of this rotation and angle of attack then determine the maneuvering characteristics of the ship. In this paper the study of flapped rudder's 2-dimensional section was accomplished. Model tests had been carried out with different angles of attack of a main foil and flap's deflection angles to predict the performance of the flapped rudder and the 2 frame particle tracking method had been used to obtain the velocity distribution in the flow field $Re=2.8\times10^4$ had been used during the whole experiments and measured results had been compared with each other.

  • PDF

Control effects of the hydrodynamic force of twin rudder in a uniform stream (균일 흐름중에 놓인 쌍동타의 간격변화가 유체력 제어효과에 미치는 영향)

  • Shon, Chang-Bae;Oh, Woo-Jun;Ku, Youn-Kyoung;Gim, Ok-Sok;Lee, Gyoung-Woo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2010.04a
    • /
    • pp.387-388
    • /
    • 2010
  • An open water rudder test was carried out to figure out the flow characteristics around a twin rudder at $Re=1.5\times10^4$. In the analysis, the unique characteristics of a twin rudder, which effects rudder farces, were explained. The analysis is included varying angles of attack fram 10 to 30 degree. In this paper, the measured results has been compared with each other to predict the performance characteristics of a twin rudder's 2-dimensional section by 2-frame grey level cross correlation PIV method. The side force of the rudder could be mainly improved at 0.75L.

  • PDF

The Lateral Motion Responses of a Ship with Rudder Effects in the Time Domain (타(舵)의 효과(效果)를 고려(考慮)한 시간영역(時間領域)에서의 선체(船體) 횡운동응답(橫運動應答))

  • I.Y.,Gong;K.P.,Rhee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.21 no.3
    • /
    • pp.35-42
    • /
    • 1984
  • In this paper, the lateral motions of a ship in the time domain are treated by applying the Impulse Response Function Technique. The acceleration, and displacement of a ship in the time domain are needed for the purpose of such automatic controls as the fire control system and the auto-pilot of ocean-going vessels, etc. The response Amplitude Operators of a ship are calculated by the Strip Method of Salvesen-Tuck-Faltinsen, and the Pierson-Moskowitz Spectrum multiplied by spreading function is used to represent the short crested ocean waves. The ocean wave elevations in the time domain are simulated according to the Method of Borgman. Finally the rudder effect is considered by simply adding the force and moment due to the rudder to the wave exciting force. And the results of lateral motions with and without rudder are shown.

  • PDF

A Study on Azimuth Thruster for a Small Vessel (소형선박용 아지무쓰 추진기의 선회장치에 관한 연구)

  • Park, J.P.;Lee, J.M.;Jin, S.Y.;Bae, J.H.;Jung, Y.G.
    • Journal of Power System Engineering
    • /
    • v.13 no.5
    • /
    • pp.18-24
    • /
    • 2009
  • This paper shows the result of development about the revolution system of azimuth thruster which of power is less than 250kW for small ship. Advanced Azimuth revolution system can revolve propeller and rudder from 360 degree so that this system for vessel maneuvering can be excellent of propulsion effectively. Fluid power control system for azimuth thruster is designed with PID control system by using CEMTool/SIMTool program. And the actuator used for servo valve can control rudder angle, pressure and direction. The first, We had a test for the angle control of revolution system. The result of angle control confirmed that it has the good efficiency from experiment result of time input degree $30^{\circ}$, $90^{\circ}$ and $180^{\circ}$. The second, We had to a test for the pressure characteristic of hydraulic motor. As a result, We confirmed the maximum pressure 3.5MPa and steady state 0.7MPa nom experiment result of time input degree $30^{\circ}$. In this paper, it is identified the pressure characteristic of hydraulic motor and angle control for azimuth thruster by AMESim, and it has been confirmed the usefulness of AMEsim modeling was verified by comparison between AMESim simulation results and experiments results.

  • PDF

Design of The Autopilot System of vessel using Fuzzy Algorithm (퍼지제어 알고리즘을 이용한 선박의 자율운항 시스템 설계)

  • 이민수;추연규;이광석;김현덕;박연식
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.7
    • /
    • pp.1509-1513
    • /
    • 2003
  • The autopilot system of vessel is proposed to take service safety and security, to elevate service efficiency, to decrease labor and to improve working environment. Ultimate purpose of the proposed system is to minimize the number of crew by guaranteeing economical efficiency of shipping service. Recently, the research is being achieved to compensate various nonlinear parameters of vessel and apply it to course keeping control, track keeping control, roll-rudder stabilization, dynamic ship positioning and automatic mooring control etc. using optimizing control technique. Relation between rudder angle controlled by steering machine of vessel and ship-heading angle, and load condition of ship is nonlinear, which affects various parameters of shipping service. The speed and direction of waves, velocity and quantity of wind, which also cause the non-linearity of it. Therefore the autopilot system of ship requires the robust control algorithm can overcome various non-linearity. On this paper, we design the autopilot system of ship, which overcomes nonlinear Parameters and disturbance of it using Fuzzy Algorithm, evaluate the proposed algorithm and its excellence through simulation.