• Title/Summary/Keyword: Rubber-Toughened Epoxy

Search Result 9, Processing Time 0.027 seconds

Study on the AC Interfacial Breakdown Prosperities in the Interface between Toughened Epoxy and Rubber (Toughened Epoxy/Rubber계면의 교류 절연파괴 현상에 관한 연구)

  • 김태형;배덕권;이동규;정일형;김충혁;이홍표;이준웅
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.771-774
    • /
    • 2000
  • Recently, complex insulation method is used in insulation system for underground power delivery devices. Considering the interfaces which affect stability of insulation system, By modeling interface between Epoxy and Rubber, AC interfacial breakdown properties with variation of many conditions to influence on electrical properties were investigated. In this paper, toughened Epoxy and Silicone rubber were used for materials to make interface .

  • PDF

Rubber Toughened Epoxy

  • Ratna, D.;Banthia, Ajit K.
    • Macromolecular Research
    • /
    • v.12 no.1
    • /
    • pp.11-21
    • /
    • 2004
  • Toughening of epoxy resins for improvement of crack resistance has been the subject of intense research interest during the last two decades. Epoxy resins are successfully toughened by blending with a suitable liquid rubber, which initially remains miscible with epoxy and undergoes a phase separation in the course of curing that leads to the formation of a two-phase microstructure, or by directly blending preformed rubbery particle. Unlike the situation for thermoplastics, physical blending is not successful for toughening epoxy resins. Recent advances in the development of various functionalized liquid rubber-based toughening agents and core-shell particles are discussed critically in this review.

Study on the Long Time Breakdown Voltage in the Macro Interface between Epoxy and Rubber (에폭시/고무 거시계면에서 장시간 절연파괴전압에 대한 연구)

  • 박우현;이기식
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.11
    • /
    • pp.1003-1008
    • /
    • 2002
  • In this paper, the estimation of lifetime with the various conditions of the interface between toughened epoxy and rubber which are consisting materials of underground power delivery system has been studied. After the measurement of the short time AC interfacial breakdown strength on macro interfaces at room temperature, the breakdown time at several voltages were measured under the constant voltages lower than the short time breakdown voltage. The long time breakdown voltage was calculated by using Inverse Power Law. Two types of interfaces was studied. One was the interface between toughened epoxy and EPDM(Ethylene Prorylene Diene Terpolymer). The other was the interface between toughened epoxy and silicon rubber. Interfacial pressure and roughness of interfaces was determined through the characteristic of short time AC interfacial breakdown strength. Oil condition was no oiled, low viscosity oiled and high viscosity oiled. High viscosity oiled interface between Toughened epoxy and silicon rubber had the best lifetime exponent, 20.69. and the breakdown voltage of this interface after 30 years was evaluated 19.27㎸.

Study on the AC Interfacial Breakdown Properties in the Interface between toughened Epoxy and Silicone Rubber (Toughened 에폭시와 실리콘고무 계면의 교류 절연파괴 현상에 관한 연구)

  • 박우현;이기식
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.12
    • /
    • pp.1079-1084
    • /
    • 2002
  • Because complex insulation method is used in EHV(extra high voltage) insulation systems, macro Interfaces between two different bulk materials which affect the stability of insulation system exist inevitably. Interface between toughened epoxy and silicone rubber was selected as a interface in EHV insulation systems and tested AC interfacial breakdown properties with variation of many conditions to influence on electrical Properties, such as interfacial pressure, roughness and oil. Specimen was designed to reduce the effect of charge transport from electrode in the process of breakdown and to have the tangential electrical potential with the direction of the interface between epoxy and silicone rubber by using FEM(finite elements method). It could control the interfacial pressure, roughness and viscosity of oil. From the result of this study, it was shown that the interfacial breakdown voltage is improved by increasing interfacial Pressure and oil. In particular, the dielectric strength saturates at certain interracial Pressure level. The decreasing ratio of the interfacial breakdown voltage in non-oiled specimen was increased by the temperature rising, while oiled specimen was not affected by temperature.

A study on the v-t characteristics of interfaces between Toughened Epoxy and Rubber with Inverse Power Law (역승법칙을 이용한 터픈드 Epoxy/Rubber 계면의 V-t 특성에 관한 연구)

  • 박정규;이동규;오현석;신철기;박건호;박우현;이기식;이준웅
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.437-440
    • /
    • 2000
  • In this study, the interfacial dielectric breakdown phenomenon of interface between Epoxy and Rubber was discussed, which affects the stability of insulation system of power delivery devices. The breakdown strength of specimens are observed by applying high AC voltage at the room temperature. The breakdown times under the constant voltage below the breakdown voltage were gained. As constant voltage is applied, the breakdown time is proportion to the breakdown strength. The life exponent n is gained by inverse power law and the long time breakdown life time can be evaluated.

  • PDF

Study on Crack Resistance Improvement of Epoxy Insulation (Epoxy 절연물의 내크랙성 향상에 관한 연구)

  • Ha, Young-Kil;Kim, Su-Yon;Lee, Sang-Jin;Kim, Young-Seong;Park, Wan-Ki
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1581-1583
    • /
    • 1999
  • Epoxy Compound has been used as insulation material in cable accessories. During the applying voltage to cable, heat shock is induced to accessory by the temperature difference between atmosphere and conductor. In this study, crack resistance, thermal and mechanical properties were evaluated about conventional epoxy compound and rubber toughened epoxy compound. Because rubber absorbs the stress caused by heat shock, crack resistance of rubber toughened epoxy compound is high. In the case of low thermal expansion coefficient, the compound shows high crack resistance because of low volumetric change.

  • PDF

The Effect of CTBN Rubber on Mechanical Properties of Epoxy-Clay Nanocomposite (CTBN 고무 첨가에 따른 에폭시-점토 나노복합체의 물성 변화)

  • Lee, Hun-Bong;Kim, Ho-Gyum;Yoon, Keun-Byoung;Lee, Dong-Ho;Min, Kyung-Eun
    • Polymer(Korea)
    • /
    • v.32 no.1
    • /
    • pp.31-37
    • /
    • 2008
  • The effect of MMT on mechanical properties of CTBN toughened epoxy nanocomposite is studied. In case of CTBN toughened epoxy nanocomposite with modified MMT, it is found that the enhancement of toughness and tensile properties are exhibited in CTBN toughened epoxy nanocomposite with modified MMT From the results of fractured surface morphology of sample, it is clearly shown that the improved mechanical properties can be obtained in CTBN toughened nanocomposite due to the significant energy dissipation mechanism by MMT loading.

A Constitutive Law for Porous Solids with Pressure-Sensitive Matrices and a Void Nucleation Model (평균수직응력에 민감한 모재를 가진 기공체의 구성식과 기공생성모델)

  • Jeong, Hyeon-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.2 s.173
    • /
    • pp.472-480
    • /
    • 2000
  • A macroscopic yield criterion for porous solids with pressure-sensitive matrices modeled by Coulomb's yield criterion was obtained by generalizing Gurson's yield criterion with consideration of the hydrostatic yield stresses for a spherical thick-walled shell and by fitting the finite element results of a voided cube. The macroscopic yield criterion is valid for negative mean normal stresses as well as for positive mean normal stresses. From the yield criterion, a plastic potential function for the porous solids was derived either for plastic normality flow or for plastic non-normality flow of pressure- sensitive matrices. In addition, the elastic relation, an evolution equation of the plastic flow stress of the matrices and an evolution equation of the void volume fraction were presented to complete a set of constitutive relations. The set of constitutive relations was implemented into a finite element code ABAQUS to analyze the material behavior of rubber-toughened epoxies. The cavitation and the deformation behavior were analyzed around a crack tip under three-point bending and around notch tips under four-point bending. In the numerical analyses, the cavitation of rubber particles was considered via a stress-controlled nucleation model. The numerical results indicate that a reasonable cavitation zone can be obtained with void nucleation controlled by the macroscopic mean normal stress, and a plastic zone is smaller around a notch tip under compression than under tension. These numerical results agree well with corresponding experimental results on the cavitation and plastic zones.

Toughening of Epoxy Resin with PES-CTBN-PES Triblock Copolymers (PES-CTBN-PES 공중합체를 이용한 에폭시 수지의 강인성 향상 연구)

  • 김형륜;명범영;송경헌;육종일;윤태호
    • Polymer(Korea)
    • /
    • v.25 no.2
    • /
    • pp.246-253
    • /
    • 2001
  • Amino terminated PES-CTBN-PES triblock copolymer was synthesized from PES oligomer and commercial CTBN rubber (CTBN1300$\times$13), and molecular weight of the copolymer was controlled to be 15000 g/mole. The copolymer was utilized to toughen diglycidyl ether of bisphenol-A (DGEBA) epoxy resin which was cured with 4,4'-diaminodi-phenylsulfone (DDS) and subjected to the measurement of thermal properties, fracture toughness ( $K_{IC}$), flexural properties and solvent resistance. The properties were compared with those from the samples modified by CTBN/PES blends. The maximum loading of copolymer into the epoxy resin was 40 wt% without utilizing solvent, at which $K_{IC}$ fracture toughness of 2.21 MPa${\cdot}m^{0.5}$ was obtained without sacrificing flexural properties and chemical resistance. However, the epoxy resin modified with PES/CTBN blend exhibited much lower $K_{IC}$ and flexural properties compared to the epoxy resins toughened by PES-CTBN-PES copolymers.

  • PDF