• Title/Summary/Keyword: Rubber-Cord Composite

Search Result 18, Processing Time 0.025 seconds

Effect of Aging on Adhesive Strength of Rubber-steel Cord Composite and Tire-endurance (고무-스틸 코드 접착력과 타이어 내구력에 미치는 노화의 영향)

  • Lim, Won-Woo
    • Journal of Adhesion and Interface
    • /
    • v.3 no.2
    • /
    • pp.40-44
    • /
    • 2002
  • We invested effect of the keeping-time of uncured composite and thermal aging, of cured composite on adhesive strength for rubber-brass coated steel cord composite in this study. We also evaluated how the adhesive strength affects to tire endurance. Using PAD adhesion specimen, peel adhesive strength was measured. The uncured composite was kept for several days up to 35 days in factory. Cured composite was also kept for 5 and 10 days at $85^{\circ}C$ in dry oven. Peel adhesive strength was decreased with increasing keeping-time and showed lower value with increasing thermal aging time. The lower peel adhesive strength, the lower tire-endurance. This fact was caused by the humidity and thermal aging which affected in the decrease of adhesive strength of the rubber-steel cord composite and resulted in interface fracture between rubber and steel cord. This phenomenon was confirmed from SEM investigation and tire-endurance. It was just known that corrosion of steel cord's surface and aging of adhesive layer strongly affected to decrease of adhesive strength. This resulted in directly decreasing tire-endurance.

  • PDF

Effect of Interface in Three-phase Cord-Rubber Composites (세 가지 상을 갖는 코드섬유-고무 복합재료의 계면의 영향)

  • Kim, Jong-Kuk;Yum, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.11
    • /
    • pp.1249-1255
    • /
    • 2009
  • Cord-rubber composites widely used in tires show very complicated mechanical behavior such as nonlinearity and large deformation. Three-phase(cord, rubber and the interface) modeling has been used to analyze the stress distribution in the cord-rubber composites more accurately. In this study, finite element methods were performed using two-dimensional generalized plane strain element and plane strain element to investigate the stress distribution and effective modulus of cord-rubber composites. Neo Hookean model was used for rubber property and several interface properties were assumed for various loading directions. It was found that the interface properties affect the effective modulus and the distributions of shear stress.

Large deformation analysis of inflated air-spring shell made of rubber-textile cord composite

  • Tran, Huu Nam;Tran, Ich Thinh
    • Structural Engineering and Mechanics
    • /
    • v.24 no.1
    • /
    • pp.31-50
    • /
    • 2006
  • This paper deals with the mechanical behaviour of the thin-walled cylindrical air-spring shell (CAS) made of rubber-textile cord composite (RCC) subjected to different types of loading. An orthotropic hyperelastic constitutive model is presented which can be applied to numerical simulation for the response of biological soft tissue and of the nonlinear anisotropic hyperelastic material of the CAS used in vibroisolation of driver's seat. The parameters of strain energy function of the constitutive model are fitted to the experimental results by the nonlinear least squares method. The deformation of the inflated CAS is calculated by solving the system of five first-order ordinary differential equations with the material constitutive law and proper boundary conditions. Nonlinear hyperelastic constitutive equations of orthotropic composite material are incorporated into the finite strain analysis by finite element method (FEM). The results for the deformation analysis of the inflated CAS made of RCC are given. Numerical results of principal stretches and deformed profiles of the inflated CAS obtained by numerical deformation analysis are compared with experimental ones.

Effect of Thermal Aging on the Change of Interfacial Adhesion between Polyketone Cord and Rubber by RFL Primer Treatment (RFL 프라이머 처리에 따른 폴리케톤 코드사와 고무 간의 계면접착성 변화에 열노화가 미치는 영향)

  • Jo, Hani;Oh, Woo Jin;Kang, Song Hee;Lee, Seung Goo
    • Textile Coloration and Finishing
    • /
    • v.30 no.2
    • /
    • pp.77-89
    • /
    • 2018
  • In the case of fiber/rubber composites for tire applications, the interfacial adhesion between fiber and rubber significantly affects the physical properties of the finished products. Generally, organic synthetic fibers used for tire cords are treated with resorcinol formaldehyde latex(RFL) primer on the surface of the fiber to improve the adhesion to rubber. Changes of adhesion between rubber and tire cords might weaken as temperature rises due to overheating of car engine and friction with road. In this study, the effects of temperature on the primer treated polyketone cord/rubber composites and the changes in interfacial adhesion were investigated. Polyketone cord/rubber composites were prepared after RFL solution treatment on the surface of polyketone fibers. After that, composites was thermally aged at different temperature conditions(60, 80, 100, $120^{\circ}C$) and times(1, 5, 10, 15days). The adhesion strength of polyketone cord/rubber composite treated with RFL primer was higher than untreated composite by more than 3 times. After heat aging, the adhesion strength of untreated polyketone cord/rubber composites increased while the RFL treated polyketone cord/rubber composites decreased somewhat.

Behavior for 2 Ply Rubber/Cord Laminates (2층 고무/코드 적층판의 층간거동)

  • 이윤기;임동진;윤희석;김민호;김춘휴
    • Composites Research
    • /
    • v.16 no.4
    • /
    • pp.1-9
    • /
    • 2003
  • 2 ply laminated composite is regarded to simulate the interply behavior of the belt layer of the tire. It was cone with 3 dimensional FE(Finite Element) analysis to determine interply shear stress and strain. Widthwise, the shear strain was measured by the pin method. These results are compared with those of CLT(classical lamination theory) in center region and those of Kassapoglou's and Kelsey's theory in edge region. In the FE analysis. rubber is assumed as linear elastic material. and rubber/cord laminate as the orthotropic material composed of cord and rubber In the FE result, interlaminar shear stress causing the interlaminar delamination has the largest value in the edge region of the inner rubber layer. Numerical results obtained coincides with CLT well in the center region, and agrees with other theoretical result little in the edge region.

Research on CR/Nylon 6 Cord Rubber Sleeve of Rubber Air Spring (고무 공기 스프링용 CR/Nylon 6 코드 고무 슬리브에 대한 연구)

  • Seo, Jae-Chan;Kim, Dae-Jin;Park, Hae-Youn;Seo, Kwan-Ho
    • Elastomers and Composites
    • /
    • v.49 no.4
    • /
    • pp.293-304
    • /
    • 2014
  • Rubber air spring (RAS) is a special suspension device for the industries of automobile, railroad car and other transportation. A RAS serves as a spring component with the elastic effect of compression and expansion of air in a composite rubber bag. The main component of RAS is the rubber sleeve. Rubber sleeve is the composite which is made up of combination of chloroprene rubber (CR) and nylon 6 cord, and the adhesive strength between CR and nylon 6 cord is very important. In this study, considering the effects of additives in rubber sleeve, various physical properties were tested to find the optimal combination of composition and conditions. Further, in order to select the optimum orientation of the reinforcing fibers, numerical analysis was performed using the finite elements method. After assembling all components of RAS, it was mounted on an actual vehicle, and then it was tested air leakage, fatigue life and fundamental properties.

Effect of Interface on the Properties of Cord-Rubber Composites (코드섬유-고무 복합재료의 물성치에 대한 계면의 영향)

  • Lim, Hyun-Woo;Kim, Jong-Kuk;Yum, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.5
    • /
    • pp.583-588
    • /
    • 2010
  • The nonlinearity and high deformability of rubber make accurate analysis of the behavior of cord-rubber composites a challenging task. Some researchers have adopted the third phase between cord and rubber and have carried out three-phase modeling. However, it is difficult to determine the thickness and properties of the interface in cord-rubber composites. In this study, a two-dimensional finite-element method (2D FEM) is used to investigate the effective and normalized moduli of cord-rubber composites having interfaces of various thicknesses; this model takes into account the 2D generalized plane strain and a plane strain element. The neo-Hookean model is used for the properties of rubber, several interface properties are assumed and three loading directions are selected. It is found that the properties and thickness of the interface can affect the nonlinearity and the effective modulus of cord-rubber composites.

The Study for Fracture Parameter J in Rubber-Cord Composites with a Penny-Shaped Crack on Cord-End (고무-코드 복합체 코드-끝 균열에 대한 파괴역학적 매개변수 J에 관한 연구)

  • Yang, Kyeong-Jin;Kang, Ki-Ju
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.304-308
    • /
    • 2000
  • In this work, an equation of J-integral for a penny-shaped crack at the end of the cord embedded in rubber matrix is proposed. The dimensional analysis is applied to derived to the equation of J-integral. We assume that the energy Parameter J is separated into the deformation and the geometry function, and which is proved using by separation parameter.

  • PDF

Failure of Tire Belt Cord (타이어 Belt Cord 의 파단)

  • Kim, Seok-Nam;Takashi, Akasaka
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1394-1400
    • /
    • 2003
  • Tire subjected to inflation pressure and the load of passenger car has a important roll to dynamic performance characteristics of radial tires such as cornering and braking. These performance characteristics are directly related to the belt cord durability of tires. In this paper, we analyze the mechanism of belt cord broken due to cord tension at braking theoretically.

  • PDF

A Study on the Effect of the Shape of the Exhaust Port on the Flow and Temperature Distribution in the Drying Part of the MRG(Mechanical Rubber Goods) Reinforcing Yarn Manufacturing System (MRG(Mechanical Rubber Goods) 보강사 제조시스템의 건조부에서의 배기구 형상이 유동 및 온도 분포에 미치는 영향에 관한 연구)

  • Kim, Hwan Kuk;Kwon, Hye In;Do, Kyu Hoi
    • Textile Coloration and Finishing
    • /
    • v.34 no.2
    • /
    • pp.109-116
    • /
    • 2022
  • Tire codes are made of materials such as hemp, cotton, rayon, nylon, steel, polyester, glass, and aramid are fiber reinforcement materials that go inside rubber to increase durability, driveability, and stability of vehicle tires. The reinforcement of the tire cord may construct a composite material using tires such as automobiles, trucks, aircraft, bicycles, and fibrous materials such as electric belts and hoses as reinforcement materials. Therefore, it is essential to ensure that the adhesive force between the rubber and the reinforced fiber exhibits the desired physical properties in the rubber composite material made of a rubber matrix with reinforced fibers. This study is a study on the heat treatment conditions for improving the adhesion strength of the tire cord and the reinforced fiber for tires. The core technology of the drying process is a uniform drying technology, which has a great influence on the quality of the reinforcement. Therefore, the uniform airflow distribution is determined by the geometry and operating conditions of the dryer. Therefore, this study carried out a numerical analysis of the shape of a drying nozzle for improving the performance of hot air drying in a dryer used for drying the coated reinforced fibers. In addition, the flow characteristics were examined through numerical analysis of the study on the change in the shape of the chamber affecting drying.