• Title/Summary/Keyword: Rubber material

Search Result 910, Processing Time 0.026 seconds

Effect of Long-term Corona-discharge on RTV Silicone Rubber (장기 코로나 처리에 따른 RTV 실리콘 절연재료의 특성변화)

  • 연복희;안종식;허창수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.266-269
    • /
    • 2001
  • This paper investigated the aging characteristic under long-term corona discharge on loon temperature vulcanized silicone rubber, which has been using as a protective coating material for solving the contaminant problem. The applied electrical field is 10kV/cm ac and corona discharge treatment was applied on RTV silicone rubber sheet for maximum 250 hours. With the duration of corona discharge, the diffusible low molecular weight species increased, which was determined the usage of n-hexane extraction method. In addition, the contaminant layer was formed on the treated surface, and then measured the contact angle. We investigated the relation of contact angle and diffusible low molecular weight species. It is found that scissor of main chain PDMS and side chains (CH$_3$) and the generation of LMW species were occurred by a corona discharge. The improvement of hydrophobicity rate is thought due to the increase of diffusible LMW species.

  • PDF

Natural Rubber Electrical Conduction Mechanism in High and Low Electric Fields (고전계와 저전계에서 천연고무의 전기전도기구)

  • Yun, Ju-Ho;Choi, Yong-Sung;Moon, Jong-Dae;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.307-308
    • /
    • 2007
  • This work shows the experimental results obtained from ageing at a temperature of 100 C for 48, 70 and 312 h, although the application of AC electrical tension in samples and the measuring of current leakage are presented. The measurements in samples were carried out with samples prepared from the deformulated commercial materials and respectively reformulated into thin films. The obtained results showed the mechanisms of conduction of samples in low and high electric fields. It was also identified an electric tension transition showing that in low fields it prevails the Ohm's law conduction, and in high electric fields it prevails the conduction of space charge limited current (SCLC). These results can support the natural rubber formulation process having as their main objective the reducing of the mechanisms that occur under high conduction current in high electric fields, which leads the material to a dielectric breakdown. Raw Natural rubber in Brazil is extracted from rubber trees (Hevea brasiliensis) in farms in So Paulo State by using some new plantation technology in smaller spaces, with trees placed a few meters from each other. In the Amazon rain forest the rubber trees are found naturally and their spacing may be of hundreds of meters or even kilometers between them. It is necessary to research this raw material from different internationally standard clones to characterize dielectric and electric properties for industrial applications. Moreover, this natural material has a low commercial price when compared to the synthetic ones.

  • PDF

Adhesion Characteristics of Semiconductive and Insulating Silicone Rubber by Oxygen Plasma Treatment (산소 플라즈마 처리에 의한 반도전-절연 실리콘 고무의 접착 특성)

  • Lee Ki- Taek;Huh Chang-Su
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.2
    • /
    • pp.153-157
    • /
    • 2006
  • In this work, the effects of plasma treatment on surface properties of semiconductive silicone rubber were investigated in terms of X-ray photoelectron spectroscopy (XPS) and contact angles, The adhesion characteristics of semiconductive-insulating interface layer of silicone rubber were studied by measuring the T-peel strengths, The results of the chemical analysis showed that C-H bonds were broken due to plasma discharge and Silica-like bonds(SiOx, x=3${\~}$4) increased, It is thought that semiconductive silicone rubber surfaces treated with plasma discharge led to an increase in oxygen-containing functional groups, resulting in improving the degree of adhesion of the semiconductive-insulating interface layer of silicone rubber. However, the oxygen plama for 20 minute produces a damaged oxidized semiconductive silicone rubber layer, which acts as a weak layer producing a decrease in T-peel strength, These results are probably due to the modifications of surface functional groups or polar component of surface free energy of the semiconductive silicone rubber.

Preparation and Properties of Polyketone/Rubber Blend to Improve Heat-resistance (내열성 향상을 위한 폴리케톤/탄성체 블렌드 제조 및 특성)

  • Yun, Ju-Ho;Yoon, Jeong-Hwan;Ha, Seong-Mun;Kim, Jong-Hwal
    • Elastomers and Composites
    • /
    • v.49 no.1
    • /
    • pp.37-42
    • /
    • 2014
  • Terpolymer polymerized carbon monoxide, ethylene and propylene as monomer, Polyketone is low-cost material compared with general engineering plastics such as polyamide, polyester, polycarbonate. Moreover, it is excellent in mechanical properties, chemical resistance, fuel permeability and abrasion resistance. So, it is attracted attention as the environmental friendly material to replace conventional engineering plastics. In this study, has been prepared Polyketone/Rubber (Ethylene propylene copolymer, Acrylonitrile butadiene rubber, Ethylene acrylic rubber) blends to improve heat resistance and investigated characteristic behavior after heat/oil aging.

[ $K_2Ti_6O_{13}$ ]-filled Rubber Composite (육티탄산칼륨이 함유된 고무복합체)

  • Park, Jong-Il;Kang, Dong-Heon;Kang, Suck-Choon;Chung, Kyung-Ho;Hong, Young-Keun
    • Elastomers and Composites
    • /
    • v.35 no.3
    • /
    • pp.180-187
    • /
    • 2000
  • For the purpose of developing a new type of frictional material using scrap rubber in which rubber makes continuous phase, potassium titanate($K_2Ti_6O_{13}$) was synthesized and added to rubber matrix. Needle-typed $K_2Ti_6O_{13}$ powders were obtained through the flux method using KCI salt and excess $K_2CO_3$. It was also found that the powders should be surface-treated to enhance adhesion and 10 phr of epoxy be added for the physical properties of the rubber composite.

  • PDF

Shape Optimal Design of Anti-vibration Rubber Assembly in Tractor Cabin Using Taguchi Method (다구찌법을 이용한 트랙터 캐빈 방진고무의 형상최적설계)

  • Seo, Ji-Hwan;Lee, Boo-Yoon;Lee, Sanghoon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.4
    • /
    • pp.34-40
    • /
    • 2019
  • We performed shape optimization of an anti-vibration rubber assembly which is used in the field option cabin of agricultural tractors to improve the vibration isolation capability. To characterize the hyper-elastic material property of rubber, we performed uniaxial and biaxial tension tests and used the data to calibrate the material model applied in the finite element analyses. We conducted a field test to characterize the input excitation from the tractor and the output response at the cabin frame. To account for the nonlinear behavior of rubber, we performed static analyses to derive the load-displacement curve of the anti-vibration rubber assembly. The stiffness of the rubber assembly could be calculated from this curve and was input to the harmonic analyses of the cabin. We compared the results with the test data for verification. We utilized Taguchi's parameter design method to determine the optimal shape of the anti-vibration rubber assembly and found two distinct shapes with reduced stiffness. Results show that the vibration at the cabin frame was reduced by approximately 35% or 47.6% compared with the initial design using the two optimized models.

The vessel collision load on bridge with fender system (방호공을 고려한 선박의 충돌하중)

  • 이계희;고재용;이성로
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.193-200
    • /
    • 2004
  • In this study, the impact load on bridge by vessel collision in consideration of fender system is evaluated by numerical method. The bow of object vessel(DWT5000) is standardized, and modeled by shell elements. The main body of objective vessel is modeled by beam elements that present mass distribution and stiffness of vessel. The buoyancy effect of vessel is considered as linear spring. The two types of fender systems, such as steel and rubber are analyzed in this study. In steel fender system, the steel plates that absorb collision energy by its collapse are modeled by shell element with stiffener. The steel is material modeled elastic-plastic material. In the rubber fender system, the rubber material is modeled hyper-elastic material and the main body of fender is modeled by solid elements. The global impact responses of vessel and fender system are evaluated by explicit dynamic scheme. The results show that the magnitude of vessel collision force are depended on the material behavior of fender system. Also the values of collision load are conservative compare to the those of design codes.

  • PDF

Estimating Material Parameters of Rubber-liked Material Similar to Biomaterial (생체 유사재료를 설명하는 물질 상수 추정)

  • Kang, Taewon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.1
    • /
    • pp.45-49
    • /
    • 2013
  • It is important to have a well developed strain energy function in order to understand the mechanical behavior of biomaterial like the blood vessel of artery. However, since it is not possible to have a complete form of strain energy function of artery, theoretical framework describing the behaviour of Rubber-like material which is similar to blood vessel is applied to infer useful forms of strain energy function of biomaterial. Based on Chuong-Fung model and Mooney-Rivlin model, material parameters are estimated based on experimental data. From the results, it can be inferred that the estimated parameters can be used to explain the difference of mechanical characteristics between normal vessel and vessel with stent.

Large deformation analysis of inflated air-spring shell made of rubber-textile cord composite

  • Tran, Huu Nam;Tran, Ich Thinh
    • Structural Engineering and Mechanics
    • /
    • v.24 no.1
    • /
    • pp.31-50
    • /
    • 2006
  • This paper deals with the mechanical behaviour of the thin-walled cylindrical air-spring shell (CAS) made of rubber-textile cord composite (RCC) subjected to different types of loading. An orthotropic hyperelastic constitutive model is presented which can be applied to numerical simulation for the response of biological soft tissue and of the nonlinear anisotropic hyperelastic material of the CAS used in vibroisolation of driver's seat. The parameters of strain energy function of the constitutive model are fitted to the experimental results by the nonlinear least squares method. The deformation of the inflated CAS is calculated by solving the system of five first-order ordinary differential equations with the material constitutive law and proper boundary conditions. Nonlinear hyperelastic constitutive equations of orthotropic composite material are incorporated into the finite strain analysis by finite element method (FEM). The results for the deformation analysis of the inflated CAS made of RCC are given. Numerical results of principal stretches and deformed profiles of the inflated CAS obtained by numerical deformation analysis are compared with experimental ones.

Hyperelastic Finite Element Formulation using Pressure Potential (압력포텐샬을 이용한 초탄성 유한요소 정식화)

  • Kim, Heon-Young;Kim, Ho;Kim, Joong-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.12
    • /
    • pp.2492-2502
    • /
    • 2002
  • A rubber-like material model is generally characterized by hyperelasticity and formulated by a total stress-total strain relationship because the material shows nonlinear elastic behaviour under large deformation. In this study, a pressure potential obtained by a separately interpolated pressure is introduced to the non-linear finite element formulation incorporating with incompressible or almost incompressible condition of the material. The present formulation is somewhat different from the general formulation using the pressure computed in the displacement field. A non-linear finite element analysis program is developed for the plane strain and the axisymmetric contact problems of a rubber-like material. Various examples with rubber material are analyzed for its verification. The results about deformed shapes and stress distributions thought to be meaningful in comparison with a commercial program, MARC.