• Title/Summary/Keyword: Rubber compounds

Search Result 279, Processing Time 0.021 seconds

Reinforcing Performance of Networked Silicas in Silica-filled Chloroprene Rubber Compounds

  • Ryu, Changseok;Yang, Jae-Kyoung;Park, Wonhyeong;Kim, Sun Jung;Kim, Doil;Seo, Gon;Kim, Wook-Soo;Ahn, Ki Woong;Kim, Beak Hwan
    • Elastomers and Composites
    • /
    • v.54 no.1
    • /
    • pp.40-53
    • /
    • 2019
  • The physical properties of chloroprene rubber (CR) compounds reinforced with networked silicas were investigated by comparing them to those reinforced with conventional silica to observe the effect of the organic connection bonds combining silica particles on their cure, tensile, and aging performance. The introduction of networked silica to CR increase in silica content to 80 phr in rubber, while the content of conventional silica was limited to 60 phr. The CR compounds reinforced with networked silica showed higher resistance to combustion. The gradual increases in delta torque, Mooney viscosity, and modulus of silica-filled CR compounds with silica content were mainly attributed to the specific interaction between the chlorine atoms of CR and the hydroxyl groups of silica. The CR compounds reinforced with networked silica showed low compression set and heat build-up and maintained their high modulus even after thermal, oil, and ozone aging.

The Study of Optimized Compounds Containing Silica and Coupling Agent to Improve the Physical Properties of Rubber Compounds (고무물성 향상을 위한 실리카 및 실란 커플링제의 최적배합에 관한 연구)

  • Oh, Sae-Chul;Go, Jin-Hwan;Lee, Seag;Park, Nam-Cook
    • Elastomers and Composites
    • /
    • v.30 no.2
    • /
    • pp.112-121
    • /
    • 1995
  • The physical properties of rubber compounds containing silica and siliane coupling agent in order to replace the carbon black and prepare for environmental regulation showed improved dynamic properties(rebound, heat build-up, $60^{\circ}C\;tan\;{\delta}$), but the abrasion resistance did not improve compared with the compounds containing carbon black. Also, curing retardation because of coherent structure of silica improved by the addition of DEG, but the mixing step change of activators did not so much improve the static and dynamic properties of the compounds containing high synthetic rubber, the status of mixing and dispersion showed that the compounds containing carbon black was much better than the compounds containing silica by TEM investigation.

  • PDF

Interfaces Between Rubber and Metallic or Textile Tire Cords

  • Ooij Wim J. Van;Luo Shijian;Jayaseelan Senthil K,
    • Elastomers and Composites
    • /
    • v.34 no.4
    • /
    • pp.299-314
    • /
    • 1999
  • Bonding metal and textile components to rubber has always posed a problem. In this paper, an attempt had been made to modify textile and metal surfaces for bonding with rubber. The metal surfaces were modified using silane coupling agents and textile fibers were modified using plasma polymerization techniques. Some results on adhesion of metals to a range of sulfur-cured rubber compounds using a combination of organofunctional silanes are given here. The treatment was not only effective for high-sulfur compounds but also for low-sulfur com pounds as used in engine mounts and even for some semi-EV compounds. Coatings of plasmapolymerized pyrrole or acetylene were deposited on aramid and polyester tire cords. Standard pull-out force adhesion measurements were used to determine adhesion of tire cords to rubber compounds. The plasma coatings were characterized by various techniques and the performance results are explained in an interpenetrating network model.

  • PDF

Calculation of Sidewall Lateral Stiffness of a Radial Tire Using Material Properties of Rubber Compounds (고무배합물의 물성을 이용한 레이디얼 타이어의 사이드월 횡강성 계산)

  • Kim, Yong-Woo;Kim, Jong-Guk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.10
    • /
    • pp.1667-1675
    • /
    • 2003
  • This paper has considered the calculation of lateral stiffness of radial tire's sidewall, which consists of cord stiffness and rubber sheet stiffness, by using the material constants of rubber compounds of tire. We have suggested and illustrated how to calculate the rubber sheet lateral stiffness by considering the following aspects. First, the rubber sheet consists of various kinds of rubber compounds with different thickness along the sidewall in the radial direction. Secondly, equivalent Young's modulus of the rubber sheet can be calculated by using available experimental data of rubber compounds. The present method enables us to divide the calculation domain as many as we want, which can reduce numerical error in the calculation of geometrical and mechanical properties. We have illustrated the calculation by using the data of the radial tire for passenger car of P205/60R15.

Effect of Vinyl Group Content of the Functionalized Liquid Butadiene Rubber as a Processing Aid on the Properties of Silica Filled Rubber Compounds

  • Kim, Donghyuk;Ahn, Byungkyu;Ryu, Gyeongchan;Hwang, Kiwon;Song, Sanghoon;Kim, Wonho
    • Elastomers and Composites
    • /
    • v.56 no.3
    • /
    • pp.152-163
    • /
    • 2021
  • Liquid butadiene rubber (LqBR) is used as a processing aid and plays a vital role in the manufacture of high-performance tire tread compounds. In this study, center-functionalized LqBR (C-LqBR) was polymerized with different vinyl content via anionic polymerization. The effects of the vinyl content on the properties of the compounds were investigated by partially replacing the treated distillate aromatic extract (TDAE) oil with C-LqBR in silica-filled rubber compounds. C-LqBR compounds showed a low Payne effect and Mooney viscosity regardless of the vinyl content, because of improved silica dispersion due to the ethoxysilyl group. As the vinyl content of C-LqBR increased, the optimum cure time (t90) increased owing to a decrease in the number of allylic hydrogen. Moreover, the glass transition temperature (Tg) of the compound increased, and snow traction and abrasion resistance performance decreased, whereas wet grip improved. The energy loss characteristics revealed that the hysteresis attributed to the free chain ends of C-LqBR was dominant.

The Effects of Liquid Butadiene Rubber and Resins as Processing Aids on the Physical Properties of SSBR/Silica Compounds

  • Iz, Muhammet;Kim, Donghyuk;Hwang, Kiwon;Kim, Woong;Ryu, Gyeongchan;Song, Sanghoon;Kim, Wonho
    • Elastomers and Composites
    • /
    • v.55 no.4
    • /
    • pp.289-299
    • /
    • 2020
  • Highly aromatic (HA) oils are common processing aids used in tire tread compounds. However, they often bleed and evaporate from the vulcanizates during tire use. Thus, the mechanical and dynamical properties of the tire decrease. To overcome this problem, we investigated nonfunctionalized liquid butadiene rubber (LBR-305, Kuraray) and center-functionalized liquid butadiene rubber (C-LqBR), polymerized by anionic polymerization. In addition to the liquid butadiene rubbers, p-tert-octylphenol (P-Resin) and C5 hydrocarbon (H-Resin) tackifier resins, which can induce entanglement of rubber compounds, were researched as a processing aid to solve the bleeding problem. Liquid butadiene rubbers have significantly reduced extraction loss by crosslinking with the main rubber chain. They have also increased the abrasion resistance and showed similar or better mechanical and dynamical properties against HA oils. However, resin compounds did not show differences in extraction loss compared to HA oil compounds; instead, they showed increased wet traction.

Effect of Acrylonitrile-Butadiene Rubber on the Properties of Silica-Filled Styrene-Butadiene Rubber Compounds: Reduction of Silane Coupling Agent and Diphenylguanidine (실리카로 보강된 SBR 배합물의 특성에 미치는 NBR 효과: 실란커플링제와 DPG의 사용량 감소)

  • Choi, Sung-Seen;Chang, Dong-Ho;Kim, Ik-Sik
    • Elastomers and Composites
    • /
    • v.37 no.4
    • /
    • pp.217-223
    • /
    • 2002
  • Silica-filled rubber compounds show poor filler dispersion and slow cure characteristics compared to carbon black-filled ones. In general, a silica-filled rubber compound contains silane coupling agent (bis-(3-(triethoxysilyl)-propyl)-tetrasulfide, TESPT) and diphenylguanidine (DPG) to improve the filler dispersion and to make fast cure characteristics. Acrylonitrile-butadiene rubber (NBR) improves the filler dispersion in silica-filled styrene-butadiene rubber (SBR) compounds. In this study, effect of NBR on the properties of silica-filled SBR compounds was investigated. Properties of the compounds which contain NBR without DPG or with small amount of TESPT (Compound A) were compared with those of the compounds which contain TESPT and DPG without NBR (Compound B). Scorch time of Compound A is faster than those of Compound B. Modulus and tensile strength of Comound A are slightly lower than those of Compound B. Traction property of the Comound A is better than that of the Compound B. Addition of NBR leads to reduction of the used amount of TESPT and DPG.

Studies on the Crosslinking Density and Reinforcement of Rubber Compounds by Cure System (가황조건별 배합고무의 가교밀도와 고무보강성에 관한 연구)

  • Park, Nam-Cook;Lee, Seog
    • Elastomers and Composites
    • /
    • v.33 no.5
    • /
    • pp.315-323
    • /
    • 1998
  • The purpose of this study was to investigate the crosslinking density and reinforcement of rubber compounds with various carbon black loadings, cure systems and cure temperatures. Bound rubber content increased with volume fraction of carbon black in rubber compounds, but total crosslinking density decreased with increasing the bound rubber content. Rate constant of cure reaction was changed significantly by cure system and cure temperature, especially it showed strong dependence on the cure temperature. High activation energys of cure reaction were shown in the rubber compound with high loading of carbon black under EC system and in the rubber compound with low loading of carbon black under CC system. High total crosslinking density of vulcanized compounds appeared in the rubber compound with low loading of carbon black and CC system among cure systems. Typical change of total crosslinking density by EC system was not shown. The highest elastic constant by Mooney-Rivlin equation was shown in the rubber compound with low loading of carbon black and SEC system. Modulus increased as increasing the loading of carbon black in the rubber compounds and showed the order of SEC, CC, and EC system for cure system.

  • PDF

The Effect of Surface Area of Silicas on Their Reinforcing Performance to Styrene-butadiene Rubber Compounds

  • Ryu, Changseok;Kim, Sun Jung;Kim, Do Il;Kaang, Shinyoung;Seo, Gon
    • Elastomers and Composites
    • /
    • v.51 no.2
    • /
    • pp.128-137
    • /
    • 2016
  • The effect of the surface area of silicas on their reinforcing performance to styrene-butadiene rubber (SBR) compounds was systematically investigated. The feasibility of the Brunauer-Emmett-Teller surface area ($S_{BET}$) as a parameter representing the characteristics of the silicas was discussed compared to the mesopore volume, c value, oil absorption, and uptake of silane. The increase in $S_{BET}$ of silicas caused a considerable increase in Mooney viscosity, minimum torque, and hysteresis loss of the silica-filled SBR compounds, while significantly enhancing their abrasion property. These changes were explained by the attrition between the hydrophilic silica surface and the hydrophobic rubber chains. As expected, the change in $S_{BET}$ did not induce any remarkable changes in the cure, processing, tensile, and dynamic properties of the silica-filled SBR compounds because the crosslinking density of the rubber chains mainly determined these properties.

Influence of Mixing Procedure on Properties of Carbon Black-filled Natural Rubber Compounds

  • Park, Sung-Seen
    • Macromolecular Research
    • /
    • v.8 no.4
    • /
    • pp.192-198
    • /
    • 2000
  • Cure characteristics and physical properties of carbon black-filled natural rubber (NR) compounds depending on the mixing procedure were studied using the compounds with different pre-final mixing (FM-1) stages. Carbon master batch (MB) and first and second remitting (1RM and 2RM) stages were employed as the FM-1 stage. Bound rubber content of the FM compound decreased with increasing the mixing steps. This was due to the decrease of the molecular weight distribution of the polymer by the rubber chain scission during the mixing. The Mooney viscosity decreased with increasing the mixing steps. Cure characteristics of the compounds were found to be different with the mixing procedures. The cure times of the compound became slower by increasing the number of the mixing steps. This was explained by the length of rubber chain, the carbon black network, distribution of the curatives in the compound, and immobilization of the polymeric segments. Modulus and tensile strength of the vulcanizate did not show a specific trend with the mixing procedure. Fatigue life of the vulcanizate increased by increasing the mixing stages.

  • PDF