• Title/Summary/Keyword: Rubber Cord

Search Result 64, Processing Time 0.028 seconds

Finite Element Analysis of Air Springs with Fiber-Reinforced Rubber Composites Using 3-D Shell Elements (3차원 셸 요소를 이용한 섬유보강 고무모재 공기 스프링의 유한요소해석)

  • Lee, Hyoung-Wook;Huh, Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.4
    • /
    • pp.602-609
    • /
    • 2001
  • This paper is concerned with the orthotropic problem of diaphragm-type air springs which consist of rubber linings, nylon reinforced rubber composite and bead ring. The analysis is carried out with a finite element method developed to consider the orthotropic properties, geometric nonlinearity using four-node degenerated shell element with reduced integration. Physical stabilization scheme is used to control the zeroenergy mode of the element. The analysis includes an inflation analysis and a lateral analysis of an air spring for the deformed shape and the spring load with respect to the vertical and l ateral deflection. Numerical results demonstrate the variation of the outer diameter, the fold height, the vertical force and the lateral force with respect to the inflation pressure and the lateral deflection.

Prediction of Fatigue Life in 2 Ply Rubber/Cord Laminate (2층 고무/코드 적층판의 피로 수명 예측)

  • 임동진;이윤기;윤희석;김민호
    • Composites Research
    • /
    • v.16 no.3
    • /
    • pp.9-17
    • /
    • 2003
  • In order to simulate the crack connection between cords and the interply crack growth in the belt-layer of real tire, 2 ply rubber/cord laminate specimens with exposed edges were tested in 4~11mm displacement control. Measurement of the crack connection is evaluated when crack reaches the half of the length between 45$^{\circ}$ aligned cords, and the amount of the crack growth is measured by the steel probe method. 2 dimensional analytic modeling was performed to simulate the crack connection between cords at the exposed edges. Also, the theoretical life of the specimens was calculated from the crack connection life between cords(critical value) and from the critical value to the final failure by the use of Tearing energy(T); the strain energy release per unit area of one fracture surface of a crack. Then, theoretical life was compared with those of experiments. The life prediction up to the critical value has about 20% error compared to experimental life, and up to the final failure about 65% error. Therefore, total theoretical life has about 45% error compared to the experimental life, which is conceivable in the case of rubber.

Studies on the Quality Reinforcement for Pneumatic Tire and Tube (Part 5) Physical Properties for Tire Cord and Butyl Tube (Tire 및 Tube의 품질보강(品質補强)에 관(關)한 연구(硏究) (제5보(第5報)) Tire Cord 및 Butyl Tube의 물성(物性)에 대(對)하여)

  • Kim, Joon-Soo;Lee, Myung-Whan;Yum, Hong-Chan;Lee, Chin-Bum;Park, Chang-Ho;Hong, Chong-Myung;Im, Dong-Ho
    • Elastomers and Composites
    • /
    • v.4 no.1
    • /
    • pp.89-93
    • /
    • 1969
  • 1. Physical properties of various nylon cords in a tire, both of home and foreign products are studied. The experimental data for home nylon cords appeared to be quite satisfactory for use in a tire compared with foreign nylon cords with respect to its tenacity, elongation, shrinkage and contraction. 2. Excellent results have been obtained with 50 phr carbon in butyl-carbon compounding.

  • PDF

Wearable wireless respiratory monitoring system (의복착용형 무선 호흡모니터 시스템)

  • Lee, In-Kwang;Kim, Seong-Sik;Jang, Jong-Chan;Kim, Koon-Jin;Kim, Kyung-Ah;Lee, Tae-Soo;Cha, Eun-Jong
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.133-142
    • /
    • 2008
  • Respiration is induced by muscular contraction of the chest and abdomen, resulting in the abdominal volume change. Thus, continuous measurement of the abdominal dimension enables to monitor breathing activity. Conductive rubber cord has been previously introduced and tested to develop wearable application for respiratory measurements. The present study implemented wireless wearable respiratory monitoring system with the conductive rubber cord in the patient's pants. Signal extraction circuitry was developed to obtain the abdominal circumference changes reflecting the lung volume variation caused by respiratory activity. Wireless transmission was followed based on the zigbee communication protocol in a size of 65mm${\times}$105mm easily put in pocket. Successful wireless monitoring of respiration was performed in that breathing frequency was accurately estimated as well as different breathing patterns were easily recognized from the abdominal signal. $CO_2$ inhalation experiment was additionally performed in purpose of quantitative estimation of tidal volume. Air mixed with $0{\sim}5%\;CO_2$was inhaled by 4 normal males and the respiratory air flow rate, abdominal dimension change, and end tidal $CO_2$ concentration were simultaneously measured in steady state. $CO_2$ inhalation increased the tidal volume in normal physiological state with a correlation coefficient of 0.90 between the tidal volume and the end tidal $CO_2$ concentration. The tidal volume estimated from the abdominal signal linearly correlated with the accurate tidal volume measured by pneumotachometer with a correlation coefficient of 0.88 with mean relative error of approximately 8%. Therefore, the tidal volume was accurately estimated by measuring the abdominal dimension change.

A Study on the Stiffness of Tire (타이어의 강성계수에 관한 고찰)

  • 이상선;반재삼;김항우;조규종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.886-889
    • /
    • 2002
  • Finite Element Method for 3-D static loaded passenger car tire on the rigid surface is performed for studying the stiffness of tire to compare with experimental data. The tire elements used for FEM are defined each component to allow an easy change for the design parameters. Also, a hyperelastic material which is composed of tread and sidewall has been used to consider a large deformation of rubber components. The orthotropic characters of rubber-cord composite materials are used as well. The air pressure, a vertical and a lateral load are applied step by step and iterated by Modified Newton method for geometric and boundary condition nonlinear simulation. This study shows nonlinear analysis method for tire and the bearing capacity of tire due to the external force.

  • PDF

Durability Evaluation and Train Test of Air Spring for Electric Railway (전동차용 공기스프링 내구성평가 및 실차시험)

  • 김완두;우창수;이학주;정승일;김석원;김영구;최경진;이동형
    • Proceedings of the KSR Conference
    • /
    • 2000.11a
    • /
    • pp.468-475
    • /
    • 2000
  • An air spring was accepted for rail vehicle secondary suspension to reduce and absorb tile vibration and the noise. The air spring for the electric railway was developed with domestic technology, which consisted of a cord reinforced rubber bellows, a upper plate, a lower plate and a stopper rubber spring The fatigue test was conducted in laboratory by using servo hydraulic fatigue testing system to verify the durability. And to guarantee the adaptation of this air spring, the ride comfort and the air pressure variation were measured in train test on Boondang line.

  • PDF

Adhesion Study of SBR-Nylon by Direct Blending Technique (직접블렌딩 방법을 이용한 SBR-나일론 접착 연구)

  • Chung, Kyung Ho;Kang, Do Kyun;Yoon, Tae Ho;Kang, Shin Young
    • Journal of Adhesion and Interface
    • /
    • v.1 no.1
    • /
    • pp.30-37
    • /
    • 2000
  • This study focused on the direct blending of bonding agents (resorcinol, hexamethylenetetramine, NaOH) into rubber compound to simplify the composite manufacturing process. The mechanism of direct blending system was studied by comparing the following two cases. The one is direct blending of bonding agents into rubber compound and then allows the reaction (Case I). The other is mixing of reactant obtained by reaction of bonding agents (Case II). According to the morphology analysis, the Case II showed the clean interfacial area between bonding agents and matrix rubber, while the Case I created the new interphase under proper processing condition. Also, the optimum adhesion strength between SBR and nylon cord could be obtained with bonding agents whose molar ratios of resprcinol/hexamethylenetetramine was 1.2/1 in the recipes.

  • PDF

Modification of SBR Latex and its Adhesion Characteristic (SBR Latex의 개질 및 접착특성)

  • Kim, Goo-Ni;Chun, Yong-Chul;Oh, Sang-Taek;Park, Seung-Hyeun;Lee, Chang-Ho;Yoo, Chong-Sun;Min, Byung-Kwon
    • Elastomers and Composites
    • /
    • v.29 no.5
    • /
    • pp.444-452
    • /
    • 1994
  • Emulsion graft copolymerizations of vinyl monomers, butyl acrylate(BA), methyl methacrylate(MMA), 2-ethylhexyl acrylate (EHA), glycidyl methacrylate (GMA), 2-hydroxyethyl methacrylate(HEMA), methacrylonitrile(MAN), dimethylaminoethyl methacrylate(DAMA) or 2-vinyl pyridine(VP), onto carboxyl-terminated SBR latex were carried out under different experimental conditions. In case of synthesizing SBR-g-poly(butyl acrylate), the degree of grafting was increased with increasing the amount of emulsifier, polymerization temperature and the amount of initiator. Pull-out strength of resorcinol-formaldehyde-latex(RFL) adhesives formulated with modified latexes was very higher than that of RFL adhesive formulated with ungrafted latex. When the modified latexes with GMA, HEMA, MAN, DAMA or VP were used, the break occurred at cords. Peel strength of RFL adhesives formulated with SBR-g-poly(GMA), SBR-g-poly(HEMA) or SBR-g-poly(VP) was higher by about 1.3 times than that of RFL adhesives formulated with unmodified SBR against nylon cord and was higher by about 2.0 times against polyester cord.

  • PDF

J-integral of Penny-Shaped Crack on the End of Stiff Fiber Embedded in Rubbery Materials (고무와 섬유로 구성된 복합체 내의 섬유 끝 부분의 원형 균열에 대한 J-적분)

  • Yang, Gyeong-Jin;Gang, Gi-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.4
    • /
    • pp.617-624
    • /
    • 2002
  • An equation of J-integral for a penny-shaped crack at the end of the fiber embedded in rubber matrix is proposed. The values of J-integral for the specimens with various crack and specimen radius are obtained by FEA(Finite Element Analysis). The dimensional analysis is applied to derive an equation of J-integral as a nonlinear elastic energy release rate. The geometry and deformation calibration function in an equation of J can be expressed in a separated form. The geometry calibration function characterizing the effects of cord and specimen size is expressed in a polynomial form of fourth order. The deformation calibration function characterizes the effect of the overall level of strain. As approaching the infinitesimal strain, the value of the deformation calibration function approaches the results of LEFM(Linear Elastic Fracture Mechanics).

Fatigue Life Prediction of Tire Belt Edge (타이어 벨트 끝단의 피로수명 예측)

  • 김재연;양영수;김기운
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.954-957
    • /
    • 2004
  • Tire belt durability is characterized by the initiation of a crack at the belt edge region, and the propagation of the crack until the ply is separated. Experimental methods have been used to analysis of the belt durability in the cord-reinforced rubber composite tires, but it takes much cost and time to make experiments. In this paper, a finite element method to analyze the fatigue life of a crack at the belt edge of tires is presented. The fatigue life is analyzed by using a three-dimensional Finite Element Modeling. This method includes a global-local finite element analysis to provide the detail necessary to model explicitly an internal crack and use of the J-integral for energy release rate evaluation.

  • PDF