• 제목/요약/키워드: Ru complex

검색결과 100건 처리시간 0.023초

Submicrosecond dynamics of nucleic acids studied with a long-lifetime metal-ligand complex

  • Kang, Jung-Sook;Son, Woo-Sung;Kostov-Yordan
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2002년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2
    • /
    • pp.312.2-312.2
    • /
    • 2002
  • The metal-ligand complex, [Ru(phen)$_2$(dppz)]^{2+}$ (phen = 1.10-phenanthroline, dppz = dipyrido[3.2-a:2', 3'-c]phenazine) (RuPD), was used as a spectroscopic probe for studying nucleic acid dynamics. The RuPD complex displays a long lifetime and a molecular light switch property upon DNA binding due to shielding of its dppz ligand from water. (omitted)

  • PDF

Synthesis, Structure, and Peroxidase Activity of an Octahedral Ru(III) Complex with a Tripodal Tetraamine Ligand

  • Cho, Jang-Hoon;Kim, Kwan-Mook;Noh, Dong-Youn;Lee, Hong-In
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권11호
    • /
    • pp.3904-3908
    • /
    • 2011
  • A new octahedral Ru(III) complex with a tripodal tetraamine ligand, tpea = tris[2-(1-pyrazoyl)ethyl]amine, has been prepared and characterized. The single crystal X-ray crystallographic study of the complex revealed that the complex has a near octahedral geometry with the tetradentate ligand and two chloride ions. Peroxidase activity was examined by observing the oxidation of 2,2'-azinobis(3-ethylbenzothiazoline)-6-sulfonic acid (ABTS) with hydrogen peroxide in the presence of the complex. Amount of $ABTS^{+{\bullet}}$ generated during the reaction was monitored by UV/VIS and EPR spectroscopies. After the initiation of the peroxidase reaction, $ABTS^{+{\bullet}}$ concentration increases and then decreases after certain time, indicating that both ABTS and $ABTS^{+{\bullet}}$ are the substrates of the peroxidase activity of the Ru(III) complex.

Fluorescence Resonance Energy Transfer in Calf Thymus DNA from a Long-Lifetime Metal-Ligand Complex to Nile Blue

  • Kang, Jung-Sook;Lakowicz, Josepb R.
    • BMB Reports
    • /
    • 제34권6호
    • /
    • pp.551-558
    • /
    • 2001
  • We extended the measurable time scale of DNA dynamics to submicrosecond using a long-lifetime metal-ligand complex, $[Ru(phen)_2(dppz)]^{2+}$ (phen=1,10-phenanthroline, dppz=dipyrido[3,2-a:2',3'-c]phenazine) (RuPD), which displays a mean lifetime near 350 ns. We partially characterized the fluorescence resonance energy transfer (FRET) in calf thymus DNA from RuPD to nile blue (NB) using frequency-domain fluorometry with a high-intensity, blue light-emitting diode (LED) as the modulated light source. There was a significant overlap of the emission spectrum of the donor RuPD with the absorption spectrum of the acceptor NB. The F$\ddot{o}$rster distance ($R_0$) that was calculated from the spectral overlap was $33.4\;{\AA}$. We observed dramatic decreases in the steady-state fluorescence intensities of RuPD when the NB concentration was increased. The intensity decays of RuPD were matched the closest by a triple exponential decay. The mean decay time of RuPD in the absence of the acceptor NB was 350.7 ns. In a concentration-dependent manner, RuPD showed rapid intensity decay times upon adding NB. The mean decay time decreased to 184.6 ns at $100\;{\mu}M$ NB. The FRET efficiency values that are calculated from the mean decay times increased from 0.107 at $20\;{\mu}M$ NB to 0.474 at $100\;{\mu}M$ NB concentration. The use of FRET with a long-lifetime metal-ligand complex donor is expected to offer the opportunity to increase the information about the structure and dynamics of nucleic acids.

  • PDF

나노입자 이산화티타늄 전극 기반의 고효율 전기화학형 발광 셀 제작 (Fabrication of High-Efficiency Electrochemiluminescence Cell with Nanocrystalline TiO2 Electrode)

  • 권혁문;한치환;성열문
    • 전기학회논문지
    • /
    • 제59권2호
    • /
    • pp.363-368
    • /
    • 2010
  • In this work, electrochemiluminescence (ECL) cell using nanocrysralline $TiO_2$ electrode and Ru(II) complex (Ru${(bpy)_3}^{2+}$) is fabricated for low-cost high-efficient energy conversion device application. The nanocrysrallme $TiO_2$ layer (${\sim}10{\mu}m$ thickness) with large surface area (${\sim}360m^2$/g) can largely inject electrons from nanoporous $TiO_2$ electrode and allows the oxidation/reduction of Ru(II) complex in the nanopores. The cell structure is composed of a glass/ F-doped $SnO_2$(FTO)/ porous $TiO_2$/ Ru(II) complex in acetonitrile/ FTO/ glass. The nanocrysralline $TiO_2$ layer is prepared using sol-gel combustion method. The ECL efficiency of the cell consisting of the porous $TiO_2$ layers was 250 cd/W, which was higher than that consisting of only FTO electrode (50cd/W). The nanoporous $TiO_2$ layers wwas effective for increasine ECL intensities.

Ruthenium Complex-catalyzed Highly Selective Co-oligomerization of Alkenes

  • Ura, Yasuyuki;Tsujita, Hiroshi;Mitsudo, Take-Aki;Kondo, Teruyuki
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권12호
    • /
    • pp.2139-2152
    • /
    • 2007
  • Ruthenium complex-catalyzed reactions often require highly qualified tuning of reaction conditions with substrates to attain high yield and selectivity of the products. In this review, our strategies for achieving characteristic ruthenium complex-catalyzed co-oligomerization of different alkenes are disclosed: 1) The codimerization of 2-norbornenes with acrylic compounds by new ruthenium catalyst systems of RuCl3(tpy)/Zn [tpy = 2,2':6',2''-terpyridine] or [RuCl2(η6-C6H6)]2/Zn in alcohols, 2) A novel synthesis of 2-alkylidenetetrahydrofurans from dihydrofurans and acrylates by zerovalent ruthenium catalysts, such as Ru(η4-cod)(η6-cot) [cod = 1,5-cyclooctadiene, cot = 1,3,5-cyclooctatriene] and Ru(η6-cot)(η2-dmfm)2 [dmfm = dimethyl fumarate], 3) Regio- and stereoselective synthesis of enamides by Ru(η6-cot)(η2-dmfm)2-catalyzed codimerization of N-vinylamides with alkenes, and 4) Unusual head-to-head dimerization of styrenes and linear codimerization of styrenes with ethylene by Ru(η6-cot)(η2-dmfm)2 catalyst in the presence of primary alcohols.

Comparison of Binding Stoichiometry of [Ru(1,10-phenanthroline)2dipyrido [3,2-a:2',3'-c]phenazine]2+ and its Bis-derivative to DNA

  • Jang, Yoon-Jung;Lee, Hyun-Mee;Lee, Il-Bong
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권12호
    • /
    • pp.3658-3662
    • /
    • 2010
  • A new bis-Ru(II) complex, in which two [Ru(1,10-phenanthroline)$_2$dipyrido[3,2-a:2',3'-c]phenazine]$^{2+}$ were tethered by a 1,3-bis(4-pyridyl)propane linker, was synthesized and its binding mode and stoichiometry to DNA was investigated by optical spectroscopy including linear dichroism (LD) and fluorescence intensity measurement. The magnitude of the negatively reduced LD signal of the bis-Ru(II) complex in the dipyrido[3,2-a:2',3'-c]phenazine (DPPZ) ligand absorption region appeared to be similar compared to that in the DNA absorption region, which is considered to be a diagnostic for DPPZ ligand intercalation. The binding stoichiometry measured from its LD magnitude and enhanced fluorescence intensity corresponds to one ligand per three DNA bases, effectively violating the nearest neighbouring site exclusion model for classical DNA intercalation. This observation is in contrast with monomer analogue [Ru(1,10-phenanthroline)$_2$dipyrido[3,2-a:2',3'-c]phenazine]$^{2+}$, which is saturated at the DPPZ ligand to DNA base ratio of 0.25, or one DPPZ ligand per four nucleobases.

Preparation and Photophysical Properties of 4-(9-Anthrylethenyl)-4'-methyl-2,2'-bipyridine and Its Ruthenium Bipyridyl Complex $[Ru(bpy)_2(t-aemb)](PF_6)_2$

  • 배은영;신은주
    • Bulletin of the Korean Chemical Society
    • /
    • 제19권1호
    • /
    • pp.86-93
    • /
    • 1998
  • Trans-4-(9-anthrylethenyl)-4'-methyl-2,2'-bipyridine(t-aemb) and its bipyridyl Ru complex $[Ru(bpy)_2(t-aemb)](PF_6)_2$ (bpy=2,2'-bipyridine) 1 have been prepared and their excited state properties have been studied. t-Aemb exhibits solvent-dependent fluorescence and efficient trans→cis photoisomerization. 1 shows very weak fluorescence and its photochemically reactive. Fluorescence is wavelength-dependent. While the excitation into the MLCT band makes the complex fluorescent, direct absorption by the t-aemb ligand leads to the photoreaction of t-aemb ligand and no fluorescence is observed. 1 is considered to behave in part as bichromophoric molecule in which $[Ru(bpy)_3](PF_6)_2$ and anthryl group are covalently linked by ethenyl linkage. Because anthryl moiety is not effectively conjugated with bipyridylethenyl moiety due to steric hindrance, weak fluorescence can be explained due to the efficient energy or electron transfer.

Sequence Dependent Binding Modes of the ΔΔ- and ΛΛ-binuclear Ru(II) Complexes to poly[d(G-C)2] and poly[d(A-T)2]

  • Chitrapriya, Nataraj;Kim, Raeyeong;Jang, Yoon Jung;Cho, Dae Won;Han, Sung Wook;Kim, Seog K.
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권7호
    • /
    • pp.2117-2124
    • /
    • 2013
  • The binding properties and sequence selectivities of ${\Delta}{\Delta}$- and ${\Lambda}{\Lambda}-[{\mu}-Ru_2(phen)_4(bip)]^{4+}$ (bip = 4,4'-biphenylene (imidazo [4,4-f][1,10]phenanthroline) complexes with $poly[d(A-T)_2]$ and $poly[d(G-C)_2]$ were investigated using conventional spectroscopic methods. When bound to $poly[d(A-T)_2]$, a large positive circular dichroism (CD) spectrum was induced in absorption region of the bridging moiety for both the ${\Delta}{\Delta}$- and ${\Lambda}{\Lambda}-[{\mu}-Ru_2(phen)_4(bip)]^{4+}$ complexes, which suggested that the bridging moiety sits in the minor groove of the polynucleotide. As luminescence intensity increased, decay times became longer and complexes were well-protected from the negatively charged iodide quencher compared to that in the absence of $poly[d(A-T)_2]$. These luminescence measurements indicated that Ru(II) enantiomers were in a less polar environment compared to that in water and supported by minor groove binding. An angle of $45^{\circ}$ between the molecular plane of the bridging moiety of the ${\Delta}{\Delta}-[{\mu}-Ru_2(phen)_4(bip)]^{4+}$ complex and the local DNA helix axis calculated from reduced linear dichroism ($LD^r$) spectrum further supported the minor groove binding mode. In the case of ${\Lambda}{\Lambda}-[{\mu}-Ru_2(phen)_4(bip)]^{4+}$ complex, this angle was $55^{\circ}$, suggesting a tilt of DNA stem near the binding site and bridging moiety sit in the minor groove of the $poly[d(A-T)_2]$. In contrast, neither ${\Delta}{\Delta}$-nor ${\Lambda}{\Lambda}-[{\mu}-Ru_2(phen)_4(bip)]^{4+}$ complex produced significant CD or $LD^r$ signal in the absorption region of the bridging moiety. Luminescence measurements revealed that both the ${\Delta}{\Delta}$- and ${\Lambda}{\Lambda}-[{\mu}-Ru_2(phen)_4(bip)]^{4+}$ complexes were partially accessible to the $I^-$ quencher. Furthermore, decay times became shorter when bis-Ru(II) complexes bound to $poly[d(G-C)_2]$. These observations suggest that both the ${\Delta}{\Delta}$- and ${\Lambda}{\Lambda}-[{\mu}-Ru_2(phen)_4(bip)]^{4+}$ complexes bind at the surface of $poly[d(G-C)_2]$, probably electrostatically to phosphate group. The results indicate that ${\Delta}{\Delta}$- and ${\Lambda}{\Lambda}-[{\mu}-Ru_2(phen)_4(bip)]^{4+}$ are able to discriminate between AT and GC base pairs.

A Novel Method for Preparing of Oxoruthenates Complexes: trans-[RuO3(OH)2]2-, [RuO4]-, (n-Pr4N)+[RuO4]- and [RuO4 and Their Use as Catalytic Oxidants

  • Shoair, Abdel-Ghany F.
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권10호
    • /
    • pp.1525-1528
    • /
    • 2005
  • The synthesis and characterization of ${K_3[Ru(C_2O_4)3]{\cdot}4H_2O\;(C_2O_4}^{2-}$ = oxalato anoin) complex are described, and its redox properties (in buffer solution of pH = 12) have been investigated. This complex is used for in situ generation of oxoruthenates complexes which have been characterized by electronic spectroscopy. Reaction of ${K_3[Ru(C_2O_4)3]{\cdot}4H_2O$ with excess ${S_2O_8}^{2-}$ in molar KOH generates trans-${[RuO_3(OH)_2]^{2-}/S_2O_8}^{2-}$ reagent while with excess ${BrO_3}^-$ in molar $Na_2CO_3$ generates ${[RuO_4]^-/BrO_3}^-$ reagent. Avoiding the direct use of [$RuO_4$] the organic-soluble $(n-Pr_4N)^+[RuO_4]^-$, (TPAP) has been isolated by reaction of $K_3[Ru(C_2O_4)3]{\cdot}4H_2O$ with excess ${BrO_3}^-$ in molar carbonate and n-$Pr_4$NOH. In a mixture of $H_2O/CCl_4$ ruthenium tetraoxide can be generated by reaction of $K_3[Ru(C_2O_4)3]{\cdot}4H_2O$ with excess ${IO_4}^-$. The catalytic activities of oxoruthenates that have been made from $K_3[Ru(C_2O_4)3]{\cdot}4H_2O$ towards the oxidation of benzyl alcohol, piperonyl alcohol, benzaldehyde and benzyl amine at room temperature have been studied.

Dynamics of RNA Bacteriophage MS2 Observed with a Long-Lifetime Metal-Ligand Complex

  • Kang, Jung Sook;Yoon, Ji Hye
    • Journal of Photoscience
    • /
    • 제11권1호
    • /
    • pp.35-40
    • /
    • 2004
  • [Ru(2,2'-bipyridine)$_2$(4,4'-dicarboxy-2,2'-bipyridine)]$^{2+}$(RuBDc) is a very photostable probe that possesses favorable photophysical properties including long lifetime, high quantum yield, large Stokes' shift, and highly polarized emission. To evaluate the usefulness of this luminophore (RuBDc) for studying macromolecular dynamics, its intensity and anisotropy decays when conjugated to RNA bacteriophage MS2 were examined using frequency-domain fluorometry with a high-intensity, blue light-emitting diode (LED) as the modulated light source. The intensity decays were best fit by a sum of two exponentials, and the mean intensity decay time was 442.2 ns. The anisotropy decay data showed a single rotational correlation time (2334.9 ns), which is typical for a spherical molecule. The use of RuBDc enabled us to measure the rotational correlation time up to several microseconds. These results indicate that RuBDc can be useful for studying rotational diffusion of biological macromolecules.s.

  • PDF