• Title/Summary/Keyword: Row following control

Search Result 11, Processing Time 0.024 seconds

Crop-row Detection by Color Line Sensor

  • Ha, S.ta;T.Kobaysahi;K.Sakai
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.353-362
    • /
    • 1993
  • The purpose of this study is to develop a crop-row detector which can be applied to an automatic row following control for cultivators or thinning machines. In this report, a possibility of new crop-row detecting method was discussed. This detecting method consists of two principal means. One is the hardware means to convert the two dimensional crop-row vision to the compacted one dimensional information. The conversion is achieved by a color line sensor and a rotating mirror. In order to extract crop-row , R and G signals of RGB color system are used. The locations of two different points on the target row are detected by this means. Another is the software means to estimate the offset value and the heading angle between the detector and the target row which can be assumed as a straight line. As a result of discussion, it was concluded that this detecting method would be accurate enough for practical use.

  • PDF

Development of an Autonomous Worker-Following Transport Vehicle ( II ) - Supplementation of driving control system and field experiment - (농작업자 자동 추종 운반차 개발(II) - 주행제어시스템 보완 및 포장성능시험 -)

  • 권기영;정성림;강창호;손재룡;한길수;정석현;장익주
    • Journal of Biosystems Engineering
    • /
    • v.27 no.5
    • /
    • pp.417-424
    • /
    • 2002
  • This study was conducted to develop a vehicle, leading or following a worker at a certain distance to assist laborious transporting works in greenhouses. A prototype vehicle was tested in the practical field conditions using a developed control algorithm. Results of this study were summarized as following: 1. The sensing device consisted of infrared sensors was attached to the front of the vehicle and turning following algorithm was developed to make the vehicle turned as it follows a worker simultaneously. 2. The measured average power consumptions were 110W and 89W, equivalent to 5.2-6.4 hrs battery durations, at low speed with and without the maximum payload, respectively. 3. Results of the travel tests showed that the deviations from the center of row spacing were $\pm$100 mm along the ridge and $\pm$85 mm along the hydroponic bed in the greenhouse. Therefore, the worker-following transport vehicle was feasible to travel along the row without collision in the greenhouse.

Development of a Prototype of Guidance System for Rice-transplanter

  • Zhang, Fang-Ming;Shin, Beom-Soo;Feng, Xi-Ming;Li, Yuan;Shou, Ru-Jiang
    • Journal of Biosystems Engineering
    • /
    • v.38 no.4
    • /
    • pp.255-263
    • /
    • 2013
  • Purpose: It is not easy to drive a rice-transplanter avoiding underlapped or overlapped transplanting in paddy fields. An automated guidance system for the riding-type rice-transplanter would be necessary to operate the rice-transplanter autonomously or to assist the beginning drivers as a driving aid. Methods: A prototype of guidance system was composed of embedded computers, RTK-GPS, and a power-steering mechanism. Two Kalman filters were adopted to overcome sparse positioning data (1 Hz) from the RTK-GPS. A global Kalman filter estimated the posture of rice-transplanter every one second, and a local Kalman filter calculated the posture from every new estimation of the global Kalman filter with an interval of 200 ms. A PID controller was applied to the row-following mode control. A control method of U-turning mode was developed as well. A stepping motor with a reduction gear set was used to rotate the shaft of steering wheel. Results: Test trials for U-turning and row-following modes were done in a paddy field after some parameters have been tuned at the ground speed range of 0.3 ~ 1.2 m/s. The minimum RMS error of offset was 3.13 cm at the ground speed of 0.3 m/s while the maximum RMS error was 13.01 cm at 1.2 m/s. The offset RMS error tended to increase as the ground speed increased. The target point distance, LT also affected the system performance and PID controller parameters should be adjusted on different ground speeds. Conclusions: A target angle-based PID controller plus stationary steering angle controller made it possible for the rice-transplanter to steer autonomously by following a reference line accurately and even on U-turning mode. However, as condition in paddy fields is very complicated, the system should control the ground speed that prevents it from deviating too much due to ditch and slope.

A Study of the Defect Detection Method of Vision Technology via Camera Image Analysis on 4-col 7-row LED Screen Module (4단 7열 LED 사이니지 전면부 설치형 카메라기반 불량 LED 소자 검출 Vision 기술에 관한 연구)

  • Park, Young ki;Im, Sang il;Jo, Ik hyeon;Cha, Jae sang
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.11
    • /
    • pp.1383-1387
    • /
    • 2020
  • Recently, a 4-col 7-row LED Screen that provides various information of major roads and local governments has been installed and operated. However, due to deterioration due to changes in temperature and humidity, deterioration due to static electricity, and mechanical stress, partial module failure of the display may occur, which is a major cause of missing information of vitally given to citizens. However, there have been frequent cases where the 4-col and 7-row LED Screen that have failed due to reasons such as installed location where the signboards are installed on the road and outdoor, the lack of monitoring means at all times, and the lack of manpower is often neglected for a long time. Following this flow, this paper proposes a method to detect defective modules by analyzing the images collected through the camera fixed to the front part of the LED display.

Development of Real-Time Load Flow Program for Korean Energy Management System (한국형 EMS 시스템용 실시간 조류계산 프로그램 개발)

  • Yun, Sang-Yun;Cho, Yoon-Sung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.2
    • /
    • pp.242-247
    • /
    • 2010
  • This paper introduces a real-time load flow program for Korean energy management system(EMS). This study is concentrated on the following aspects. First, we propose the model of the real-time database and power system equipment for the real-time load flow. These models are extracted from the needs of load flow functions and are designed to the application common information. Second, several techniques are applied for the efficient convergence and computational speed. The generation/load mismatch is redistributed using generator participation factors which are separated to the reference bus. For the voltage control, the jacobian matrix is composed with the basic Y matrix elements and the voltage control elements. Through the optimally ordering, jacobian row and column for a column is changed. However all jacobian matrix entries have same order with the Y matrix. The proposed program is tested using the Korea Electric Power Corporation(KEPCO) system. Through the test, we verified that the proposed program can be effectively used to accomplish the Korean EMS system.

Obstacle Avoidance of a Moving Sound Following Robot using Active Virtual Impedance (능동 가상 임피던스를 이용한 이동 음원 추종 로봇의 장애물 회피)

  • Han, Jong-Ho;Park, Sook-Hee;Noh, Kyung-Wook;Lee, Dong-Hyuk;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.2
    • /
    • pp.200-210
    • /
    • 2014
  • An active virtual impedance algorithm is newly proposed to track a sound source and to avoid obstacles while a mobile robot is following the sound source. The tracking velocity of a mobile robot to the sound source is determined by virtual repulsive and attraction forces to avoid obstacles and to follow the sound source, respectively. Active virtual impedance is defined as a function of distances and relative velocities to the sound source and obstacles from the mobile robot, which is used to generate the tracking velocity of the mobile robot. Conventional virtual impedance methods have fixed coefficients for the relative distances and velocities. However, in this research the coefficients are dynamically adjusted to elaborate the obstacle avoidance performance in multiple obstacle environments. The relative distances and velocities are obtained using a microphone array consisting of three microphones in a row. The geometrical relationships of the microphones are utilized to estimate the relative position and orientation of the sound source against the mobile robot which carries the microphone array. Effectiveness of the proposed algorithm has been demonstrated by real experiments.

Hardware Approach to Fuzzy Inference―ASIC and RISC―

  • Watanabe, Hiroyuki
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.975-976
    • /
    • 1993
  • This talk presents the overview of the author's research and development activities on fuzzy inference hardware. We involved it with two distinct approaches. The first approach is to use application specific integrated circuits (ASIC) technology. The fuzzy inference method is directly implemented in silicon. The second approach, which is in its preliminary stage, is to use more conventional microprocessor architecture. Here, we use a quantitative technique used by designer of reduced instruction set computer (RISC) to modify an architecture of a microprocessor. In the ASIC approach, we implemented the most widely used fuzzy inference mechanism directly on silicon. The mechanism is beaded on a max-min compositional rule of inference, and Mandami's method of fuzzy implication. The two VLSI fuzzy inference chips are designed, fabricated, and fully tested. Both used a full-custom CMOS technology. The second and more claborate chip was designed at the University of North Carolina(U C) in cooperation with MCNC. Both VLSI chips had muliple datapaths for rule digital fuzzy inference chips had multiple datapaths for rule evaluation, and they executed multiple fuzzy if-then rules in parallel. The AT & T chip is the first digital fuzzy inference chip in the world. It ran with a 20 MHz clock cycle and achieved an approximately 80.000 Fuzzy Logical inferences Per Second (FLIPS). It stored and executed 16 fuzzy if-then rules. Since it was designed as a proof of concept prototype chip, it had minimal amount of peripheral logic for system integration. UNC/MCNC chip consists of 688,131 transistors of which 476,160 are used for RAM memory. It ran with a 10 MHz clock cycle. The chip has a 3-staged pipeline and initiates a computation of new inference every 64 cycle. This chip achieved an approximately 160,000 FLIPS. The new architecture have the following important improvements from the AT & T chip: Programmable rule set memory (RAM). On-chip fuzzification operation by a table lookup method. On-chip defuzzification operation by a centroid method. Reconfigurable architecture for processing two rule formats. RAM/datapath redundancy for higher yield It can store and execute 51 if-then rule of the following format: IF A and B and C and D Then Do E, and Then Do F. With this format, the chip takes four inputs and produces two outputs. By software reconfiguration, it can store and execute 102 if-then rules of the following simpler format using the same datapath: IF A and B Then Do E. With this format the chip takes two inputs and produces one outputs. We have built two VME-bus board systems based on this chip for Oak Ridge National Laboratory (ORNL). The board is now installed in a robot at ORNL. Researchers uses this board for experiment in autonomous robot navigation. The Fuzzy Logic system board places the Fuzzy chip into a VMEbus environment. High level C language functions hide the operational details of the board from the applications programme . The programmer treats rule memories and fuzzification function memories as local structures passed as parameters to the C functions. ASIC fuzzy inference hardware is extremely fast, but they are limited in generality. Many aspects of the design are limited or fixed. We have proposed to designing a are limited or fixed. We have proposed to designing a fuzzy information processor as an application specific processor using a quantitative approach. The quantitative approach was developed by RISC designers. In effect, we are interested in evaluating the effectiveness of a specialized RISC processor for fuzzy information processing. As the first step, we measured the possible speed-up of a fuzzy inference program based on if-then rules by an introduction of specialized instructions, i.e., min and max instructions. The minimum and maximum operations are heavily used in fuzzy logic applications as fuzzy intersection and union. We performed measurements using a MIPS R3000 as a base micropro essor. The initial result is encouraging. We can achieve as high as a 2.5 increase in inference speed if the R3000 had min and max instructions. Also, they are useful for speeding up other fuzzy operations such as bounded product and bounded sum. The embedded processor's main task is to control some device or process. It usually runs a single or a embedded processer to create an embedded processor for fuzzy control is very effective. Table I shows the measured speed of the inference by a MIPS R3000 microprocessor, a fictitious MIPS R3000 microprocessor with min and max instructions, and a UNC/MCNC ASIC fuzzy inference chip. The software that used on microprocessors is a simulator of the ASIC chip. The first row is the computation time in seconds of 6000 inferences using 51 rules where each fuzzy set is represented by an array of 64 elements. The second row is the time required to perform a single inference. The last row is the fuzzy logical inferences per second (FLIPS) measured for ach device. There is a large gap in run time between the ASIC and software approaches even if we resort to a specialized fuzzy microprocessor. As for design time and cost, these two approaches represent two extremes. An ASIC approach is extremely expensive. It is, therefore, an important research topic to design a specialized computing architecture for fuzzy applications that falls between these two extremes both in run time and design time/cost. TABLEI INFERENCE TIME BY 51 RULES {{{{Time }}{{MIPS R3000 }}{{ASIC }}{{Regular }}{{With min/mix }}{{6000 inference 1 inference FLIPS }}{{125s 20.8ms 48 }}{{49s 8.2ms 122 }}{{0.0038s 6.4㎲ 156,250 }} }}

  • PDF

Effect of a Suspended Overhead Sprayer with Sector Formed Injection Nozzles on Spraying Uniformity (두상관수장치의 부채꼴분사노즐 설치위치가 살수균일성에 미치는 영향)

  • 김명규;정태상;민영봉
    • Journal of Bio-Environment Control
    • /
    • v.8 no.4
    • /
    • pp.223-231
    • /
    • 1999
  • The one of basic functional conditions of suspended overhead sprayer, which is openly made use of irrigating on bedding plants in greenhouse, is to be kept the growing uniformity of bedding plants by making uniformly the spraying irrigation depending on the distribution of sprayed water. This study was performed to find out the optimum position of sector formed injection nozzle which is placed from the top of plant 0 the tip of the nozzle to keep spraying uniformity. The test of spraying distribution using a overhead sprayer, which was installed in a row of sector formed injection nozzles, was performed The measuring factor to represent spraying distribution was the water weight filled in each cup when the overhead sprayer was moving across the upside of the cups which were placed directly under the nozzles on keeping the distance from nozzle tip. The test results were as following , The standard mr of weights of each cup filled with spraying water was lower values at Position far from more than 60cm under nozzle tip. The driving speed variation of sprayer was not effected on spraying uniformity but the spraying water weight was inversely proportioned to the speed. To make best spraying uniformity, it was represented that the tip of the nozzle is positioned to keep the distance which the top of plants is placed at the second cross point of each injection sector of nozzles.

  • PDF

The Effect of Shading on Pedestrians' Thermal Comfort in the E-W Street (동-서 가로에서 차양이 보행자의 열적 쾌적성에 미치는 영향)

  • Ryu, Nam-Hyong;Lee, Chun-Seok
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.46 no.6
    • /
    • pp.60-74
    • /
    • 2018
  • This study was to investigate the pedestrian's thermal environments in the North Sidewalk of E-W Street during summer heatwave. We carried out detailed measurements with four human-biometeorological stations on Dongjin Street, Jinju, Korea ($N35^{\circ}10.73{\sim}10.75^{\prime}$, $E128^{\circ}55.90{\sim}58.00^{\prime}$, elevation: 50m). Two of the stations stood under one row street tree and hedge(One-Tree), two row street tree and hedge (Two-Tree), one of the stations stood under shelter and awning(Shelter), while the other in the sun (Sunlit). The measurement spots were instrumented with microclimate monitoring stations to continuously measure microclimate, radiation from the six cardinal directions at the height of 1.1m so as to calculate the Universal Thermal Climate Index (UTCI) from 24th July to 21th August 2018. The radiant temperature of sidewalk's elements were measured by the reflective sphere and thermal camera at 29th July 2018. The analysis results of 9 day's 1 minute term human-biometeorological data absorbed by a man in standing position from 10am to 4pm, and 1 day's radiant temperature of sidewalk elements from 1:16pm to 1:35pm, showed the following. The shading of street tree and shelter were mitigated heat stress by the lowered UTCI at mid and late summer's daytime, One-Tree and Two-Tree lowered respectively 0.4~0.5 level, 0.5~0.8 level of the heat stress, Shelter lowered respectively 0.3~1.0 level of the heat stress compared with those in the Sunlit. But the thermal environments in the One-Tree, Two-Tree and Shelter during the heat wave supposed to user "very strong heat stress" while those in the Sunlit supposed to user "very strong heat stres" and "exterme heat stress". The main heat load temperature compared with body temperature ($37^{\circ}C$) were respectively $7.4^{\circ}C{\sim}21.4^{\circ}C$ (pavement), $14.7^{\circ}C{\sim}15.8^{\circ}C$ (road), $12.7^{\circ}C$ (shelter canopy), $7.0^{\circ}C$ (street funiture), $3.5^{\circ}C{\sim}6.4^{\circ}C$ (building facade). The main heat load percentage were respectively 34.9%~81.0% (pavement), 9.6%~25.2% (road), 24.8% (shelter canopy), 14.1%~15.4% (building facade), 5.7% (street facility). Reducing the radiant temperature of the pavement, road, building surfaces by shading is the most effective means to achieve outdoor thermal comfort for pedestrians in sidewalk. Therefore, increasing the projected canopy area and LAI of street tree through the minimal training and pruning, building dense roadside hedge are essential for pedestrians thermal comfort. In addition, thermal liner, high reflective materials, greening etc. should be introduced for reducing the surface temperature of shelter and awning canopy. Also, retro-reflective materials of building facade should be introduced for the control of reflective sun radiation. More aggressively pavement watering should be introduced for reducing the surface temperature of sidewalk's pavement.

Development of a Device for Estimating the Optimal Artificial Insemination Time of Individually Stalled Sows Using Image Processing (영상처리기법을 이용한 스톨 사육 모돈의 인공수정적기 예측 장치 개발)

  • Kim, D.J.;Yeon, S.C.;Chang, H.H.
    • Journal of Animal Science and Technology
    • /
    • v.49 no.5
    • /
    • pp.677-688
    • /
    • 2007
  • 돼지를 포함한 대부분의 동물은 일정한 발정주기를 가지고 일정한 시기에 배란을 하는 자연배란동물이지만, 토끼, 고양이, 밍크 등의 암놈은 교미자극에 의해 배란이 일어나는 유기배란동물이다. 또한 1년에 한 번만 발정하는 단발정동물과 1년에 수차례 발정하는 다발정동물이 있다. 이 중에서 모돈은 1년에 수차례 발정하는 다발정 동물로서 발정기에 들면 비발정기와는 다른 행동을 나타낸다(Diehl 등, 2001). 양돈가의 수익을 최대화하기 위해서는 비생산일수를 최소로 줄여야 한다. 모돈의 비생산일수를 줄일 수 있는 한 가지 방법은 성공적으로 교배를 시키는 것이다. 이처럼 성공적으로 교배를 시키기 위해서는 수정적기를 정확히 예측해야 한다. 만약 수정적기를 정확히 판단하지 못하여 수태가 되지 않으면, 비생산일수가 늘어나 손실을 입게 된다. 따라서 수정적기를 정확히 판단하는 것은 모돈의 성공적인 인공수정에 있어서 중요한 요소이다. 수정적기는 배란이 일어나기 전 10시간에서 12시간 사이이며, 발정이 시작되는 시점을 기준으로 하였을 때 경산돈의 경우 26시간에서 34시간 사이이고 미경산돈의 경우는 18시간에서 26시간 사이이다(Evans 등, 2001). 현재 하루에 두 번 모돈의 발정을 확인하는 것이 일반화되어 있으며, 이 때 웅돈을 접촉시키거나 육안관찰을 통하여 발정 유무를 판단한다. 이러한 방법에는 숙련된 기술과 풍부한 경험이 요구될 뿐만 아니라 총 소요노동력의 30% 정도가 요구된다(Perez 등, 1986). 하루에 두 번밖에 발정을 감지하지 않기 때문에 발정이 언제 시작되었는지를 정확히 알 수 없으며, 또한 발정의 대부분이 새벽에 시작되므로 수정적기를 정확히 판단하기란 매우 어렵다. 만약 발정을 감지했더라도 적기에 인공수정을 하지 못한다면, 수태율이 낮아지므로 경제적 손실이 초래된다. 현재 이러한 문제점 때문에 2회에서 3회에 걸쳐 인공수정을 하고 있으나 이에 따른 소요비용과 소요노동력 등은 양돈가의 부담을 가중시키는 요인이 되고 있다. 돼지는 발정기가 되면 비발정기에 나타내지 않던 외음부의 냄새를 맡는 행동, 귀를 세우는 행동 및 승가허용 행동 등을 나타낸다(Diehl 등, 2001). 또한 돼지는 비발정기에 비하여 발정기에 더 많은 활동량을 나타낸다(Altman, 1941; Erez and Hartsock, 1990). Freson 등(1998)은 스톨에서 개별적으로 사육되고 있는 모돈의 활동량을 적외선센서를 이용하여 측정함으로써 발정을 86%까지 감지하였다고 보고하였다. 그러나 이 연구는 단지 모돈의 발정을 감지하였을 뿐 번식관리에 있어서 가장 중요한 수정적기의 판단 기준을 제시하지 못하였다. 따라서, 본 연구는 스톨에서 사육되는 모돈의 활동량을 측정함으로써 발정시작시각을 감지하고 이를 기준으로 인공수정적기를 예측할 수 있는 인공수정적기 예측 장치를 개발한 후 이의 성능을 농장실증실험을 통하여 시험하고자 수행되었다.