DOI QR코드

DOI QR Code

The Effect of Shading on Pedestrians' Thermal Comfort in the E-W Street

동-서 가로에서 차양이 보행자의 열적 쾌적성에 미치는 영향

  • Ryu, Nam-Hyong (Dept. of Landscape Architecture, Gyeongnam National University of Science and Technology) ;
  • Lee, Chun-Seok (Dept. of Landscape Architecture, Gyeongnam National University of Science and Technology)
  • 류남형 (경남과학기술대학교 조경학과) ;
  • 이춘석 (경남과학기술대학교 조경학과)
  • Received : 2018.10.23
  • Accepted : 2018.12.05
  • Published : 2018.12.31

Abstract

This study was to investigate the pedestrian's thermal environments in the North Sidewalk of E-W Street during summer heatwave. We carried out detailed measurements with four human-biometeorological stations on Dongjin Street, Jinju, Korea ($N35^{\circ}10.73{\sim}10.75^{\prime}$, $E128^{\circ}55.90{\sim}58.00^{\prime}$, elevation: 50m). Two of the stations stood under one row street tree and hedge(One-Tree), two row street tree and hedge (Two-Tree), one of the stations stood under shelter and awning(Shelter), while the other in the sun (Sunlit). The measurement spots were instrumented with microclimate monitoring stations to continuously measure microclimate, radiation from the six cardinal directions at the height of 1.1m so as to calculate the Universal Thermal Climate Index (UTCI) from 24th July to 21th August 2018. The radiant temperature of sidewalk's elements were measured by the reflective sphere and thermal camera at 29th July 2018. The analysis results of 9 day's 1 minute term human-biometeorological data absorbed by a man in standing position from 10am to 4pm, and 1 day's radiant temperature of sidewalk elements from 1:16pm to 1:35pm, showed the following. The shading of street tree and shelter were mitigated heat stress by the lowered UTCI at mid and late summer's daytime, One-Tree and Two-Tree lowered respectively 0.4~0.5 level, 0.5~0.8 level of the heat stress, Shelter lowered respectively 0.3~1.0 level of the heat stress compared with those in the Sunlit. But the thermal environments in the One-Tree, Two-Tree and Shelter during the heat wave supposed to user "very strong heat stress" while those in the Sunlit supposed to user "very strong heat stres" and "exterme heat stress". The main heat load temperature compared with body temperature ($37^{\circ}C$) were respectively $7.4^{\circ}C{\sim}21.4^{\circ}C$ (pavement), $14.7^{\circ}C{\sim}15.8^{\circ}C$ (road), $12.7^{\circ}C$ (shelter canopy), $7.0^{\circ}C$ (street funiture), $3.5^{\circ}C{\sim}6.4^{\circ}C$ (building facade). The main heat load percentage were respectively 34.9%~81.0% (pavement), 9.6%~25.2% (road), 24.8% (shelter canopy), 14.1%~15.4% (building facade), 5.7% (street facility). Reducing the radiant temperature of the pavement, road, building surfaces by shading is the most effective means to achieve outdoor thermal comfort for pedestrians in sidewalk. Therefore, increasing the projected canopy area and LAI of street tree through the minimal training and pruning, building dense roadside hedge are essential for pedestrians thermal comfort. In addition, thermal liner, high reflective materials, greening etc. should be introduced for reducing the surface temperature of shelter and awning canopy. Also, retro-reflective materials of building facade should be introduced for the control of reflective sun radiation. More aggressively pavement watering should be introduced for reducing the surface temperature of sidewalk's pavement.

본 연구는 폭염 시 동-서향 가로의 북측 보도($N35^{\circ}10.73{\sim}10.75^{\prime}$, $E128^{\circ}55.90-58.00^{\prime}$, 표고: 50m)에서 기상측정장비, 순복사계, 반사구와 열화상카메라를 이용한 실측을 통해 가로수와 쉘터에 의한 차양이 인체가 체감하는 열환경에 주는 영향을 MRT, L-MRT, UTCI, 바닥면, 벽면, 천개면의 구성요소별 방사온도로 평가하였다. 이를 위해 1 및 2열 가로수와 생울타리, 쉘터와 어-닝, 햇빛 노출지에 대한 열환경을 측정하였다. 9일간 오전 10시부터 오후 4시까지의 선 자세의 인체가 흡수한 매 1분 간격 인체-생기상학적 자료 그리고 1일간 오후 1시 16분부터 35분까지 보도 구성요소의 방사온도를 분석한 결과는 다음과 같다. 가로수와 쉘터에 의한 차양은 여름철 낮 동안 UTCI를 감소시킴으로써 열스트레스를 완화하였는데, 햇빛 노출지에 비해 1 가로수와 생울타리는 0.4단계~0.5단계, 2열 가로수와 생울타리는 0.5단계~0.8단계, 쉘터와 어-닝은 0.3단계~1.0단계로 낮추어 주었다. 하지만 폭염 시에는 가로수와 쉘터 하부의 열환경도 이용자들에게 대부분의 시간대에 "매우 강한 열스트레스"를 주는 것으로 나타났다. 그리고 햇빛에 노출된 보도 상의 열환경은 "매우 강한 열스트레스" 또는 "극심한 열스트레스"를 주는 것으로 나타났다. 체온 $37^{\circ}C$를 기준으로 한 보도 구성요소의 열스트레스 부하온도는 포장면 $7.4^{\circ}C{\sim}21.4^{\circ}C$, 도로면 $14.7^{\circ}C{\sim}15.8^{\circ}C$, 쉘터의 캐노피 $12.7^{\circ}C$, 어-닝 $8.6^{\circ}C$, 가로시설물 $7.0^{\circ}C$, 건물벽면 $3.5^{\circ}C{\sim}6.4^{\circ}C$ 순으로 나타났다. 열스트레스 부하율은 포장면 34.9%~81.0%, 도로면 9.6%~25.2%, 쉘터의 캐노피 24.8%, 건물벽면 14.1%~15.4%, 어-닝 7.0%, 가로시설물 5.7% 순으로 나타났다. 보도에서 보행자의 열적 쾌적성을 개선하기 위해서는 차양을 통해 포장면 및 도로면 그리고 건물벽면의 방사온도를 낮추는 것이 가장 효율적이며, 이를 위해서는 최소한의 정지와 전정을 통해 가로수의 수관투영면적과 LAI를 높여야 하며, 도로변에 지엽이 치밀한 생울타리를 조성하는 것은 필수적이다. 그리고 쉘터나 어-닝의 표면온도를 낮추기 위해서 서멀 라이너, 고반사 재료, 식생 녹화 등의 대책을 강구할 필요가 있다. 아울러 건물벽면에 재귀반사 재료를 사용함으로써 반사광을 제어하여야 하며, 적극적으로는 보도 포장 표면온도를 낮추기 위해 보도 포장면에 물을 뿌리는 것이 효율적이다.

Keywords

References

  1. Ali-Toudert, F. and H. Mayer(2006) Numerical study on the effects of aspect ratio and orientation on an urban street canyon on outdoor thermal comfort in hot and dry climate. Building and Environment 41: 94-108. https://doi.org/10.1016/j.buildenv.2005.01.013
  2. Armson, D., M. A. Rahman and A. R. Ennos(2013) A comparison of the shading effectiveness of five different street tree species in Manchester, UK. Arboric Urban 39: 157-164.
  3. Blazejczyk, K., G. Jendritzky, P. Brode, D. Fiala, G. Havenith, Y. Epstein, A. Psikuta and B. Kampmann(2013) An introduction to the universal thermal climate index(UTCI). Geographia Polonica 86(1): 5-10. https://doi.org/10.7163/GPol.2013.1
  4. BS EN ISO 7726(2001) Ergonomics of Thermal Environments: Instruments for Measuring Physical Quantities.
  5. Coutts, A. M., E. C. White, N. J. Tapper, J. Beringer and S. J. Livesley(2015) Temperature and human thermal comfort effects of street trees across three contrasting street canyon environments. Theoretical and Applied Climatology 124(1-2): 1-14.
  6. FLIR(2017) User's Manual FLIR ETS3xx Series.
  7. Gosling, S. N., E. K. Bryce, P. G. Dixon, K. M. Gabriel, E. Y. Gosling, J. M. Hanes, D. M. Hondula, L. Liang, P. A. Bustos Mac Lean, S. Muthers, S. T. Nascimento, M. Petralli, J. K. Vanos and E. R. Wanka (2014). A glossary for biometeorology. International Journal of Biometeorology 58(2): 277-308. https://doi.org/10.1007/s00484-013-0729-9
  8. Hendel M., M. Colombert, Y. Diab and L. Royon(2014) Improving pedestrian thermal comfort by pavement-Watering during intense heat events. 30th International PLEA Conference Proceedings 1: 175-182.
  9. Holst, J. and H. Mayer(2011) Impacts of street design parameters on human-biometeorological variables. Meteorological Zeitschrift 20(5): 541-552. https://doi.org/10.1127/0941-2948/2011/0254
  10. Hwang, J. W., J. Park and Y. Y. Chen(2014) An assessment of urban heat island using thermal infrared image in Jeonju city. J. Recreat. Landsc. 8: 25-33.(in Korean)
  11. Jo, S. M., C. J. Hyun and S. K. Park(2017) Analysis of the influence of street trees on human thermal sensation in summer. Journal of the Korean Institute of Landscape Architecture 45(5): 105-112.(in Korean) https://doi.org/10.9715/KILA.2017.45.1.105
  12. Kantor, N., A. Kovacs and A Takacs(2016) Small-scale human-biometeorological impacts of shading by a large tree. Open Geosciences 8: 231-245.
  13. Kantor, N., L. Chen and C. V. Gal(2018) Human-biometeorological significance of shading in urban public spaces: Summertime measurements in Pecs, Hungary. Landscape and Urban Planning 170: 241-255 https://doi.org/10.1016/j.landurbplan.2017.09.030
  14. Lai, A., M. J. Maing and E. Ng(2016) Observational studies of mean radiant temperature across different outdoor spaces under shaded conditions in densely built environment. Building and Environment 114: 397-409.
  15. Lee, S., H. B. Moon, Y. Choi and D. K. Yoon(2018) Analyzing thermal characteristics of urban streets using a thermal imaging camera: A case study on commercial streets in Seoul. Sustainability 10(2): 1-21. https://doi.org/10.3390/su10020001
  16. Nakamura, M., S. Sakai, M. Onishi and K. Furuya(2011) Thermal radiant environment measurements with fractal blind. Journal of Heat Island Institute International 6: 8-15.
  17. Napoli, D. C., F. Pappenberger and H. L. Cloke(2018) Assessing heat-related health risk in Europe via the universal thermal climate index(UTCI). International Journal of Biometeorology 62(7): 1155-1165. https://doi.org/10.1007/s00484-018-1518-2
  18. Riemer, N. M.(2006) Designing Transportable Collectively Protective Shelters for Thermal Efficiency. AAC/WMO pp. 1-15.
  19. Rosheidat, A.(2014) Optimizing the Effect of Vegetation for Pedestrian Thermal Comfort and Urban Heat Island Mitigation in a Hot Arid Urban Environment. Ph.D. Dissertation, Arizona State University, Tempe. USA.
  20. Ryu, N. H. and C. S. Lee(2016) Thermal environments of children's parks during heat wave period. Journal of the Korean Institute of Landscape Architecture 41(6): 52-61.(in Korean) https://doi.org/10.9715/KILA.2013.41.6.052
  21. Ryu, N. H. and C. S. Lee(2017) The effects of Pergola Wisteria floribunda's LAI on thermal environment. Journal of the Korean Institute of Landscape Architecture 45(6): 115-125.(in Korean) https://doi.org/10.9715/KILA.2017.45.6.115
  22. Sakai, H., K. Emura, N. Igawa and H. Iyota(2012) Reduction of reflected heat of the sun by retroreflective materials. Journal of Heat Island Institute International 7(2): 218-221.
  23. Samuels, R., B. Randolph, P. Graham, T. McCormick and B. Pollard (2010) Micro-urban-climatic thermal emissions: In a Medium-Density Residential Precinct (City Futures Research Centre, Faculty of the Built Environment, UNSW and HASSELL, Sydney).
  24. Sanusi, R., D. Johnstone, P. May and S. J. Livesley(2016) Street orientation and side of the street greatly influence the microclimatic benefits street trees can provide in summer. Journal of Environmental Quality 45(1): 167-174. https://doi.org/10.2134/jeq2015.01.0039
  25. Schrijvers, P. J. C., H. J. J. Jonker, S. R. de Roodea and S. Kenjeres (2016) The effect of using a high-albedo material on the universal temperature climate index within a street canyon. Building and Environments. Urban Climate 17: 284-303. https://doi.org/10.1016/j.uclim.2016.02.005
  26. Takacs A., C. V. Gal, A. Gulyas, M. Kiss and N. Kantor(2017) Radiation conditions at a central European square in a hot summer day, A case study from Szeged, Hungary. Extended abstract. 97th Annual Meeting of the American Meteorological Society (AMS) jointly with the 13th Symposium on the Urban Environment. Paper Nr. 1372, pp. 8.
  27. Watanabe, S. and T. Horikoshi(2012) Calculation of mean radiant temperature in outdoors based on measurements. Japanese J. Biometeorology 49(2): 49-59.(in Japanese)
  28. Watanabe, S., K. Nagano, J. Ishii and T. Horikoshi(2014) Evaluation of outdoor thermal comfort in sunlight, building shade, and pergola shade during summer in a humid subtropical region. Building and Environment 82: 556-565. https://doi.org/10.1016/j.buildenv.2014.10.002
  29. http://news-sv.aij.or.jp/kankyo/s12/Resource/ap/SPCONV/SPCONV.htm