• Title/Summary/Keyword: Routing problem

Search Result 932, Processing Time 0.027 seconds

A supply planning model based on inventory-allocation and vehicle routing problem with location-assignment (수송경로 문제를 고려한 물류최적화모델의 연구)

  • 황흥석;최철훈;박태원
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1997.10a
    • /
    • pp.201-204
    • /
    • 1997
  • This study is focussed on optimization problems which require allocating the restricted inventory to demand points and assignment of vehicles to routes in order to deliver goods for demand sites with optimal decision. This study investigated an integrated model using three step-by-step approach based on relationship that exists between the inventory allocation and vehicle routing with restricted amount of inventory and transportations. we developed several sub-models such as; first, an inventory-allocation model, second a vehicle-routing model based on clustering and a heuristic algorithms, and last a vehicle routing scheduling model, a TSP-solver, based on genetic algorithm. Also, for each sub-models we have developed computer programs and by a sample run it was known that the proposed model to be a very acceptable model for the inventory-allocation and vehicle routing problems.

  • PDF

Dueling DQN-based Routing for Dynamic LEO Satellite Networks (동적 저궤도 위성 네트워크를 위한 Dueling DQN 기반 라우팅 기법)

  • Dohyung Kim;Sanghyeon Lee;Heoncheol Lee;Dongshik Won
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.18 no.4
    • /
    • pp.173-183
    • /
    • 2023
  • This paper deals with a routing algorithm which can find the best communication route to a desired point considering disconnected links in the LEO (low earth orbit) satellite networks. If the LEO satellite networks are dynamic, the number and distribution of the disconnected links are varying, which makes the routing problem challenging. To solve the problem, in this paper, we propose a routing method based on Dueling DQN which is one of the reinforcement learning algorithms. The proposed method was successfully conducted and verified by showing improved performance by reducing convergence times and converging more stably compared to other existing reinforcement learning-based routing algorithms.

Multi-objective Optimization of Vehicle Routing with Resource Repositioning (자원 재배치를 위한 차량 경로계획의 다목적 최적화)

  • Kang, Jae-Goo;Yim, Dong-Soon
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.2
    • /
    • pp.36-42
    • /
    • 2021
  • This paper deals with a vehicle routing problem with resource repositioning (VRPRR) which is a variation of well-known vehicle routing problem with pickup and delivery (VRPPD). VRPRR in which static repositioning of public bikes is a representative case, can be defined as a multi-objective optimization problem aiming at minimizing both transportation cost and the amount of unmet demand. To obtain Pareto sets for the problem, famous multi-objective optimization algorithms such as Strength Pareto Evolutionary Algorithm 2 (SPEA2) can be applied. In addition, a linear combination of two objective functions with weights can be exploited to generate Pareto sets. By varying weight values in the combined single objective function, a set of solutions is created. Experiments accomplished with a standard benchmark problem sets show that Variable Neighborhood Search (VNS) applied to solve a number of single objective function outperforms SPEA2. All generated solutions from SPEA2 are completely dominated by a set of VNS solutions. It seems that local optimization technique inherent in VNS makes it possible to generate near optimal solutions for the single objective function. Also, it shows that trade-off between the number of solutions in Pareto set and the computation time should be considered to obtain good solutions effectively in case of linearly combined single objective function.

Trust Predicated Routing Framework with Optimized Cluster Head Selection using Cuckoo Search Algorithm for MANET

  • Sekhar, J. Chandra;Prasad, Ramineni Sivarama
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.2
    • /
    • pp.115-125
    • /
    • 2015
  • This paper presents a Cuckoo search algorithm to secure adversaries misdirecting multi-hop routing in Mobile ad hoc networks (MANETs) using a robust Trust Predicated Routing Framework with an optimized cluster head selection. The clustering technique designed in this framework leads to efficient routing in MANETs. The heavy work load in the node causes an energy drop in cluster head, which leads to re-clustering of the group, and another cluster head is selected to avoid packet loss during data transmission. The problem in the re-clustering process is that the overall efficiency of the routing process is reduced and the processing time is increased. A Cuckoo search based optimization algorithm is proposed to solve the problem of re-clustering by selecting the secondary cluster head within the initially formed cluster group and eliminating the reclustering process. The proposed framework enables a node to select a reliable and secure route for MANET and the performance can be evaluated by comparing the simulated results with the AODV routing protocol, which shows that the performance of the proposed routing protocol are improved significantly.

A Study on the Optimal Routing Problem for a Transfer Crane (컨테이너 터미널에서의 트랜스퍼 크레인의 최적 운영 방안에 관한 연구)

  • Kim, Hu-Gan;Kim, Chul-Han
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.33 no.1
    • /
    • pp.35-49
    • /
    • 2008
  • To load a container in a yard block onto a ship, a Transfer Crane (TC) moves to a target yard bay, then its hoist picks up a selected container and loads it onto a waiting Yard Truck (YT). An optimal routing problem of Transfer Crane is a decision problem which determines a given TC's the visiting sequence of yard-bays and the number of containers to transfer from each yard-bay. The objective is to minimize the travel time of the TC between yard-bays and setup time for the TC in a visiting yard. In this paper, we shows that the problem is NP-complete, and suggests a new formulation for it. Using the new formulation for the problem, we investigate some characteristics of solutions, a lower and upper bounds for it. Moreover, our lower and upper bound is very efficient to applying some instances suggested in a previous work.

A Geographic Routing based Data Delivery Scheme for Void Problem Handling in Wireless Sensor Networks (무선 센서 네트워크에서 보이드 문제 해결을 위한 위치 기반 데이터 전송 기법)

  • Kim, Seog-Gyu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.4
    • /
    • pp.59-67
    • /
    • 2009
  • In wireless sensor networks (WSNs), geographic greedy forwarding fails to move a packet further towards its destination if the sender does not have any closer node to the destination in its one hop transmission region. In this paper, we propose a enhanced geographic routing, called CGR(Cost based Geographic Routing) for efficient data delivery against void problem environment. CGR first establishes Shadow Bound Region and then accomplishes Renewing Cost Function Algorithm for effective greedy forwarding data delivery. Our simulation results show significant improvements compared with existing schemes in terms of routing path length, success delivery ratio and energy efficiency.

Routing optimization algorithm for logistics virtual monitoring based on VNF dynamic deployment

  • Qiao, Qiujuan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.5
    • /
    • pp.1708-1734
    • /
    • 2022
  • In the development of logistics system, the breakthrough of important technologies such as technology platform for logistics information management and control is the key content of the study. Based on Javascript and JQuery, the logistics system realizes real-time monitoring, collection of historical status data, statistical analysis and display, intelligent recommendation and other functions. In order to strengthen the cooperation of warehouse storage, enhance the utilization rate of resources, and achieve the purpose of real-time and visual supervision of transportation equipment and cargo tracking, this paper studies the VNF dynamic deployment and SFC routing problem in the network load change scenario based on the logistics system. The BIP model is used to model the VNF dynamic deployment and routing problem. The optimization objective is to minimize the total cost overhead generated by each SFCR. Furthermore, the application of the SFC mapping algorithm in the routing topology solving problem is proposed. Based on the concept of relative cost and the idea of topology transformation, the SFC-map algorithm can efficiently complete the dynamic deployment of VNF and the routing calculation of SFC by using multi-layer graph. In the simulation platform based on the logistics system, the proposed algorithm is compared with VNF-DRA algorithm and Provision Traffic algorithm in the network receiving rate, throughput, path end-to-end delay, deployment number, running time and utilization rate. According to the test results, it is verified that the test results of the optimization algorithm in this paper are obviously improved compared with the comparison method, and it has higher practical application and promotion value.

An Efficient Routing Path Search Technique in Power Line Communication (효율적인 전력선통신 라우팅 경로 탐색 기법)

  • Seo, Chung-Ki;Kim, Jun-Ha;Jung, Joonhong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.9
    • /
    • pp.1216-1223
    • /
    • 2018
  • As field of application of AMI, AMR uses the power line as the primary means of communication. PLC has a big merit without installation of the new network for communication in a field using the power line which is the existing equipment. However, there is a serious obstacle in commercialization for the instability by noise and communication environment. Therefore, the technical method for maintaining the communication state which overcome such demerit and was stabilized is required essentially. PLC routing technology is applied with the alternative plan now. The routing technology currently managed by field includes many problems by applying the algorithm of an elementary level. PLC routing path search problem can be modeled with the problem of searching for optimal solution as similar to such as optimal routing problem and TSP(Travelling salesman problem). In this paper, in order to search for a PLC routing path efficiently and to choose the optimal path, GA(Genetic Algorithm) was applied. Although PLC was similar in optimal solution search as compared with typical GA, it also has a difference point by the characteristic of communication, and presented the new methodology over this. Moreover, the validity of application technology was verified by showing the experimental result to which GA is applied and analyzing as compared with the existing algorithm.

A study on the routing and wavelength assignment in WDM ring (WDM 링에서의 루팅 및 파장할당에 관한 연구)

  • 김후곤;백천현;정용주
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.27 no.4
    • /
    • pp.1-10
    • /
    • 2002
  • The ring routing and wavelength assignment problem arose in the planning of optical communication networks which use WDM rings. Traffic demands are given for each pair of nodes in an ring : each demand must be routed one of the two possible connections round the ring and the wavelength assignments must be made so that there are no conflicts : that is. no two connections whose routes share a link can be assigned the same wavelength along that link. The objective is to minimize the number of used wavelengths. We propose the local optimal routing for the problem and show that there always exists an optimal solution satisfying it. Furthermore we suggest a new lower bound for the problem and show that it is very efficient for the worst case example.

A Possible Heuristic for Variable Speed Vehicle Routing Problem with 4 Time Zone (4개 시간구간에 의한 가변속도 차량경로해법)

  • Moon, Geeju;Park, Sungmee
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.35 no.4
    • /
    • pp.171-178
    • /
    • 2012
  • A possible heuristic to solve metropolitan area vehicle routing problems with variable vehicle speeds is suggested in this research. Delivery hours are classified into 4 different time zones to make variable vehicle speeds no change within the same time zone to make TDVRP simple to solve. The suggested heuristic consists of 2 stages such as initial solution development step and initial solution improvement step. A computer program using C++ is constructed to evaluate the suggested heuristic. Randomly generated vehicle routing problems are used for the experiments. This heuristic could be helpful to logistics companies by increasing delivery efficiencies since the 4 zone classification is taken from the observed traffic information offered by a local government.