• Title/Summary/Keyword: Route(network) lifetime

Search Result 63, Processing Time 0.023 seconds

An Enhanced Route Selection Algorithm Considering Packet Transmission Cost and Route Re-Establishment Cost in Ad Hoc Networks (애드 혹 네트워크에서 패킷 전송 비용과 경로 재설정 비용을 고려한 경로 선택 알고리즘)

  • Shin Il-Hee;Lee Chae-Woo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.6 s.324
    • /
    • pp.49-58
    • /
    • 2004
  • The existing route re-establishment methods which intend to extend the lifetime of the network attempt to find a new route in order not to overly consume energy of certain nodes. These methods outperforms other routing algorithms in the network lifetime aspect because that they try to consume energy evenly for the entire network. However, these algorithms involve heavy signaling overheads because they find new routes based on flooding method and route re-establishment occurs often. Because of the overhead they often can not achieve the level of performance they intend to. In this paper, we propose a new route selection algorithm which takes into account costs for the packet transmission and the route re-establishment. Since the proposed algerian considers future route re-establishment costs when it first find the route, it spends less energy to transmit given amount of data while evenly consuming energy as much as possible. Simulation results show that the proposed algorithm outperforms the existing route re-establishment methods in that after simulation it has the largest network energy which is the total summation of remaining energy of each node, the smallest energy consumed for route re-establishment, and the smallest energy needed for maintaining a session.

An optimal and genetic route search algorithm for intelligent route guidance system (지능형 주행 안내 시스템을 위한 유전 알고리즘에 근거한 최적 경로 탐색 알고리즘)

  • Choe, Gyoo-Seok;Woo, Kwang-Bang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.2
    • /
    • pp.156-161
    • /
    • 1997
  • In this thesis, based on Genetic Algorithm, a new route search algorithm is presented to search an optimal route between the origin and the destination in intelligent route guidance systems in order to minimize the route traveling time. The proposed algorithm is effectively employed to complex road networks which have diverse turn constrains, time-delay constraints due to cross signals, and stochastic traffic volume. The algorithm is also shown to significantly promote search efficiency by changing the population size of path individuals that exist in each generation through the concept of age and lifetime to each path individual. A virtual road-traffic network with various turn constraints and traffic volume is simulated, where the suggested algorithm promptly produces not only an optimal route to minimize the route cost but also the estimated travel time for any pair of the origin and the destination, while effectively avoiding turn constraints and traffic jam.

  • PDF

Energy-aware Source Routing Protocol for Lifetime Maximization in Mobile Ad Hoc Networks (이동 애드혹 네트워크에서 생존시간 최대화를 위한 에너지 인지 소스 라우팅 프로토콜)

  • Choi, Hyun-Ho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.11 no.3
    • /
    • pp.31-39
    • /
    • 2012
  • In this paper, we propose an energy-aware source routing protocol for maximizing a network lifetime in mobile ad hoc network environments. The proposed routing protocol is based on the source routing and chooses a path that maximize the path lifetime, by considering both transmit/receive power consumption and residual battery power in the mobile nodes from the perspective of source-destination end-to-end. This paper proposes a new routing cost and designs a new routing protocol for minimizing the control packet overhead occurred during the route discovery. Simulation results show that the proposed scheme has similar performances to the conventional routing schemes in terms of the number of transmission hops, transmission rate and total energy consumption, but achieves the performance improvement of 20 percent with respect to the lifetime.

Design and Implementation of Flooding based Energy-Efficiency Routing Protocol for Wireless Sensor Network (무선 센서네트워크에서 에너지 효율을 고려한 단층기반 라우팅 프로토콜의 설계와 구현)

  • Lee, Myung-Sub;Park, Chang-Hyeon
    • The KIPS Transactions:PartC
    • /
    • v.17C no.4
    • /
    • pp.371-378
    • /
    • 2010
  • In this paper, we propose a new energy-efficient routing algorithm for sensor networks that selects a least energy consuming path among the paths formed by node with highest remaining energy and provides long network lifetime and uniform energy consumption by nodes. The pair distribution of the energy consumption over all the possible routes to the base station is one of the design objectives. Also, an alternate route search mechanism is proposed to cope with the situation in which no routing information is available due to lack of remaining energy of the neighboring nodes. Simulation results show that our algorithm extends the network lifetime and enhances the network reliability by maintaining relatively uniform remaining energy distribution among sensor nodes.

Routing Protocol for Wireless Sensor Networks Based on Virtual Force Disturbing Mobile Sink Node

  • Yao, Yindi;Xie, Dangyuan;Wang, Chen;Li, Ying;Li, Yangli
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.4
    • /
    • pp.1187-1208
    • /
    • 2022
  • One of the main goals of wireless sensor networks (WSNs) is to utilize the energy of sensor nodes effectively and maximize the network lifetime. Thus, this paper proposed a routing protocol for WSNs based on virtual force disturbing mobile Sink node (VFMSR). According to the number of sensor nodes in the cluster, the average energy and the centroid factor of the cluster, a new cluster head (CH) election fitness function was designed. At the same time, a hexagonal fixed-point moving trajectory model with the best radius was constructed, and the virtual force was introduced to interfere with it, so as to avoid the frequent propagation of sink node position information, and reduce the energy consumption of CH. Combined with the improved ant colony algorithm (ACA), the shortest transmission path to Sink node was constructed to reduce the energy consumption of long-distance data transmission of CHs. The simulation results showed that, compared with LEACH, EIP-LEACH, ANT-LEACH and MECA protocols, VFMSR protocol was superior to the existing routing protocols in terms of network energy consumption and network lifetime, and compared with LEACH protocol, the network lifetime was increased by more than three times.

Localized Path Selection Algorithm for Energy Efficiency and Prolonging Lifetime in Ad-Hoc Networks (에드 혹 네트워크에서 에너지 효율성과 네트워크 수명 연장을 위한 지역적 경로 선택 알고리즘)

  • Lee, Ju-Young
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.6
    • /
    • pp.65-72
    • /
    • 2010
  • In ad-hoc network, the technique to efficiently consume the limited amounts of energy is an important issue since the wireless terminal node is operated on batteries as their energy resource. In order to extend the system lifetime, through a balanced energy consumption, we must delay the situation in which a particular terminal node's energy is depleted and results in system disconnection. Also, the link, which has low reliability due to the mobility of the node, should be avoided considering the key element when setting up the route. The proposed CMLR method in this paper enables to increase the efficiency of energy consumption with a new cost function considering the residue energy of node, error rate of link, and transmission energy consumption. This method is extending the network lifetime and increasing the energy efficiency by compromising the value between the minimization of the transmission energy consumption and maximization of the node's lifetime. Through the simulations the proposed CMLR algorithm was verified by showing better performance over the conventional methods in terms of network lifetime and path efficiency.

Route Selection Protocol based on Energy Drain Rates in Mobile Ad Hoc Networks (무선 Ad Hoc 통신망에서 에너지 소모율(Energy Drain Rate)에 기반한 경로선택 프로토콜)

  • Kim, Dong-Kyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.7A
    • /
    • pp.451-466
    • /
    • 2003
  • Untethered nodes in mobile ad-hoc networks strongly depend on the efficient use of their batteries. In this paper, we propose a new metric, the drain rate, to forecast the lifetime of nodes according to current traffic conditions. This metric is combined with the value of the remaining battery capacity to determine which nodes can be part of an active route. We describe new route selection mechanisms for MANET routing protocols, which we call the Minimum Drain Rate (MDR) and the Conditional Minimum Drain Rate (CMDR). MDR extends nodal battery life and the duration of paths, while CMDR also minimizes the total transmission power consumed per packet. Using the ns-2 simulator and the dynamic source routing (DSR) protocol, we compare MDR and CMDR against prior proposals for power-aware routing and show that using the drain rate for power-aware route selection offers superior performance results.

An Energy-Efficient Protocol For Detecting Injurious Insect in Wireless Bio Sensor Networks (무선 바이오센서 네트워크에서 에너지 효율을 고려한 해충 감지 시스템을 구축하기 위한 프로토콜)

  • Yoo, Dae Hyun;Lee, Joo Sang;An, Beongku;Kim, Nam-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.8 no.2
    • /
    • pp.29-34
    • /
    • 2008
  • In this paper, we proposed a system protocol for detecting injurious insect to support energy saving transmission in wireless bio sensor networks. The main ideas and features of the system are as follows. First, the route establishment method which is based on the energy efficiency and stability by using time-division tree structure. Second, multi-hop direction-based data gatering structure. In this structure, the selected fading method is used to transmit packet via the established tree structure for supporting power saving and route lifetime efficiently. Finally, we can get the node power saving and reduce transmission delay, thus network lifetime and efficiency are improved. The performance evaluation of the proposed protocol is via OPNET(Optimized Network Engineering Tool).

  • PDF

A Metaheuristic Approach Towards Enhancement of Network Lifetime in Wireless Sensor Networks

  • J. Samuel Manoharan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.4
    • /
    • pp.1276-1295
    • /
    • 2023
  • Sensor networks are now an essential aspect of wireless communication, especially with the introduction of new gadgets and protocols. Their ability to be deployed anywhere, especially where human presence is undesirable, makes them perfect choices for remote observation and control. Despite their vast range of applications from home to hostile territory monitoring, limited battery power remains a limiting factor in their efficacy. To analyze and transmit data, it requires intelligent use of available battery power. Several studies have established effective routing algorithms based on clustering. However, choosing optimal cluster heads and similarity measures for clustering significantly increases computing time and cost. This work proposes and implements a simple two-phase technique of route creation and maintenance to ensure route reliability by employing nature-inspired ant colony optimization followed by the fuzzy decision engine (FDE). Benchmark methods such as PSO, ACO and GWO are compared with the proposed HRCM's performance. The objective has been focused towards establishing the superiority of proposed work amongst existing optimization methods in a standalone configuration. An average of 15% improvement in energy consumption followed by 12% improvement in latency reduction is observed in proposed hybrid model over standalone optimization methods.

A Cooperative-Aided Routing Protocol for Supporting Stable Route Life-Time in Mobile Ad-hoc Wireless Sensor Networks (모바일 Ad-hoc 무선 센서 네트워크에서 안정된 경로의 Life-Time 을 지원하기 위한 협력 도움 라우팅 프로토콜)

  • Lee, Joo-Sang;An, Beongku;Kong, Hyung-Yun;Ahn, Hongyoung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.8 no.3
    • /
    • pp.47-55
    • /
    • 2008
  • 본 논문에서는 모바일 ad-hoc 무선 센서 네트워크[1]에서 안정된 경로의 설정 및 설정된 경로의 lifetime 을 효과적으로 지원하여 데이터 전송효율을 향상시키기 위한 협력 도움 라우팅 프로토콜(CARP: Cooperative_Aided Routing Protocol) 을 제안한다. 제안된 라우팅 프로토콜의 기본 아이디어 및 특징은 다음과 같다. 첫째, 소스노드와 목적지 노드 사이의 안정된 라우팅 경로의 설정이다. 본 연구에서는 모바일 노드들의 이동성 정보를 이용한 엔트로피 기반의 안정된 경로 설정방법을 제안 사용한다. 둘째, 협력도움 전송 방법이다[3][4][5]. 설정된 경로 위로 데이터 패킷을 전송 할 때 경로 lifetime과 SNR의 효과적인 지원으로 데이터 전송률을 증가시키기 위해 이웃 노드들로부터 협력 도움을 받는다. 셋째, 기존의 센서 네트워크는 주로 고정된 노드 환경에서 많은 연구가 되어 왔지만, 본 연구에서는 노드들의 이동성을 고려한 환경에서 연구가 이루어진다. 제안된 CARP 의 성능평가는 OPNET(Optimized Network Engineering Tool)을 사용하여 이루어졌으며 성능평가를 통하여 제안한 프로토콜은 안정된 경로의 설정 및 데이터 전송효율을 효과적으로 증가 시킬 수 있음을 알 수 있다.

  • PDF