• Title/Summary/Keyword: Roughness control

Search Result 537, Processing Time 0.031 seconds

Effects of Low Temperature Annealing at Various Atmospheres and Substrate Surface Morphology on the Characteristics of the Amorphous $Ta_2O_5$ Thin Film Capacitors (여러 분위기에서의 저온 열처리와 폴리머 기판의 표면 morphology가 비정질 $Ta_2O_5$ 박막 커패시터의 특성에 미치는 영향)

  • Jo, Seong-Dong;Baek, Gyeong-Uk
    • Korean Journal of Materials Research
    • /
    • v.9 no.5
    • /
    • pp.509-514
    • /
    • 1999
  • Interest in the integrated capacitors, which make it possible to reduce the size of and to obtain improved electrical performance of an electronic system, is expanding. In this study, $Ta_2$O\ulcorner thin film capacitors for MCM integrated capacitors were fabricated on a Upilex-S polymer film by DC magnetron reactive sputtering and the effects of low temperature annealing at various atmospheres and substrate surface morphology on the capacitor characteristics were discussed. The low temperature($150^{\circ}C$) annealing produced improved capacitor yield irrespective of the annealing at mosphere. But the leakage current of the $O_2$-annealed film was larger than that of any other films. This is presumably mosphere. But the leakage current of the $O_2$-annealed film was larger than that of any other films. This is presumably due to the change of the $Ta_2$O\ulcorner film surface by oxygen, which was explained by conduction mechanism study. Leakage current and breakdown field strength of the capacitors fabricated on the Upilex-S film were 7.27$\times$10\ulcornerA/$\textrm{cm}^2$ and 1.0 MV/cm respectively. These capacitor characteristics were inferior to those of the capacitors fabricated on the Si substrate but enough to be used for decoupling capacitors in multilayer package. Roughness Analysis of each layer by AFM demonstrated that the properties of the capacitors fabricated on the polymer film were affected by the surface morphology of the substrate. This substrate effect could be classified into two factors. One is the surface morphology of the polymer film and the other is the surface morphology of the metal bottom electrode determined by the deposition process. Therefore, the control of the two factors is important to obtain improved electrical of capacitors deposited on a polymer film.

  • PDF

Observation and Analysis of Turbulent Fluxes Observed at Ieodo Ocean Research Station in Autumn 2014 (2014년 가을철 이어도 종합과학기지에서의 난류 플럭스의 관측 및 분석)

  • Yun, Junghee;Oh, Hyoeun;Ha, Kyung-Ja
    • Atmosphere
    • /
    • v.25 no.4
    • /
    • pp.707-718
    • /
    • 2015
  • This study investigates the characteristics of turbulent fluxes observed at Ieodo Ocean Research Station (IORS) in autumn 2014. The 10 Hz IORS data is quality controlled and calculated to be the 30 minutes turbulent fluxes. The quality control consists of five steps: a weather check, Vickers and Mahrt (VM) sequential check, VM parallel check, flag check, and direction check. Since the IORS is an open-sea station with no orographic influence, there are no significant diurnal variations for the turbulent fluxes and 10 m wind speed. According to stabilities, the unstable and semi-unstable states appear more than 28% and 70% in autumn, respectively and they have strong winds of over $10m\;s^{-1}$. In addition, the turbulent fluxes increase with increasing wind speed. In particular, the latent heat flux and its deviations are clearly shown because the latent heat flux is influenced by the change of both the sea surface roughness and wave height induced by the wind. To demonstrate the changes of the turbulent fluxes before and after typhoon, Vongpong (1419), which is the most intense typhoon affecting the Korean Peninsula in 2014, is considered. The turbulent flux fluctuates in accordance with the location of Vongpong. The turbulent fluxes have a large (small) variation when Vongpong approaches (retreats) at the IORS. The overall results represent that the IORS data helps us understand physical processes related to air-sea interaction by providing the valuable and reliable observed data.

The Development of Automatic Grease Lubricator Driven by Gear Mechanism with Controlled Operating Time (주유시간 조절이 가능한 기어 메커니즘 구동방식의 자동그리스주유기 개발)

  • Wang, Duck-Hyun;Lee, Kyu-Young;Lee, Sang-Hoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.2 s.179
    • /
    • pp.199-206
    • /
    • 2006
  • Automatic grease lubricator is equipment that provides adequate amount of fresh grease constantly to the shaft and the bearings of machines. It minimizes the friction heat and reduces the friction loss of machines to the least. This research is to develop automatic grease lubricator by gear driven mechanism with controlled operation time. The ultimate design of this equipment is to lubricate an adequate amount of grease by a simple switch clicking according to the advanced set cycle. The backlash of the gear was minimized to increase the output power. To increase the power of gear mechanism, the binding frequency and the thickness of the coil were changed. To control the rotating cycles of the main shaft according to its set numbers, different resistance and chips were used to design the circuit to controls electrical signals with pulse. The body of the lubricator was analyzed by stress analysis with different constructed angle. The stress analysis for differing loading pressures applied to the exterior body of grease lubricator due to the setup angle, was found that the maximum stress was distributed over the outlet part where the grease lubricator suddenly narrowed contracts. Digital mock-up was analyzed and the rapid prototyping(RP) trial products were tested with PCB circuit and grease. The evaluation of the outlet capacity for RP trial products was conducted, because the friction caused by the outlet on the wall surface was an important factor in the operation of the equipment. Finally, the finishing process was applied to decrease the roughness of the surface to a comparable level and was able to test the performance examination for the product.

Effect of PVOH or polyDADMAC Addition on Surface Sizing with Oxidized Starch (PVOH와 polyDADMAC 첨가에 의한 산화전분의 표면사이징 효과 변화)

  • Seo, Dongil;Jeong, Young Bin;Jeong, Kwang Ho;Lee, Hak Lae;Youn, Hye Jung
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.45 no.4
    • /
    • pp.1-8
    • /
    • 2013
  • High loading of printing and writing grades with fillers has many advantageous aspects in papermaking because it allows decreasing fiber use and reducing manufacturing cost. High loading technology, however, has some disadvantageous aspects as well. It decreases physical properties of papers, especially strength properties. The problem associated with high loading can be reduced by applying surface sizing starch solution onto paper surface. It is important to control the penetration of the surface sizing starch solution into paper web to obtain the desired property improvement. In this study, the effect of the addition of two polymers into starch solution on paper properties has been examined. PVOH and polyDADMAC were used as polymeric additives for surface sizing with oxidized starch. Viscosity of starch solutions and surface roughness of dried starch films on glass slides showed that some interactions between polymeric additives and oxidized starch have been occurred and the most extensive interaction with starch solution was obtained with high molecular weight polyDADMAC. Low molecular weight PVOH was most effective in improving folding endurance and internal bond strength. On the other hand, polymer addition showed no effect on surface strength of paper. This indicates that not the level of starch holdout but the bonding strength of starch itself has predominant influence on surface strength of paper.

Controlled Synthesis of Single-Walled Carbon Nanotubes

  • Park, Chong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.2-2
    • /
    • 2011
  • Single-walled carbon nanotubes (SWNTs) have been considered as a promising candidate for nextgeneration electronics due to its extraordinary electrical properties associated with one-dimensional structure. Since diversity in electronic structure depends on geometrical features, the major concern has been focused on obtaining the diameter, chirality, and density controlled SWNTs. Despite huge efforts, the controlled synthesis of SWNTs has not been achieved. There have been various approaches to synthesize controlled SWNTs by preparation of homogeneously sized catalyst because the SWNTs diameter highly depends on catalyst nanoparticles size. In this study, geometrically controlled SWNTs were synthesized using designed catalytic layers: (a) morphologically modified Al2O3 supporting layer (Fe/Al2O3/Si), (b) Mo capping layer (Mo/Fe/Al/Si), and (c) heat-driven diffusion and subsequent evaporation process of Fe catalytic nanoparticles (Al2O3/Fe/Al2O3/Si). These results clearly revealed that (a) the grain diameter and RMS roughness of Al2O3 supporting layer play a key role as a diffusion barrier for obtaining Fe nanoparticles with a uniform and small size, (b) a density and diameter of SWNTs can be simultaneously controlled by adjusting a thickness of Mo capping layer on Fe catalytic layer, and (c) SWNTs diameter was successfully controlled within a few A scale even with its fine distribution. This precise control results in bandgap manipulation of the semiconducting SWNTs, determined by direct comparison of Raman spectra and theory of extended tight binding Kataura plot. We suggest that these results provide a simple and possible way for the direct growth of diameter, density, and bandgap controlled SWNTs by precise controlling the formation of catalytic films, which will be in demand for future electronic applications.

  • PDF

Membrane Permeation Characteristics and Fouling Control through the Coating of Poly(vinyl alcohol) on PVDF Membrane Surface (PVDF막 표면에 폴리비닐알코올 코팅을 통한 분리막의 투과특성 및 막오염 제어)

  • Jang, Hanna;Kim, In-Chul;Lee, Yongtaek
    • Membrane Journal
    • /
    • v.24 no.4
    • /
    • pp.276-284
    • /
    • 2014
  • In this study, a hydrophobic polyvinylidene fluoride (PVDF) membrane was modified by coating neutral hydrophilic poly(vinyl alcohol). The flux of pure water was measured and then fouling test was conducted with bovin serum albumin (BSA) as model protein foulant. As a result, the experiments showed that pure water flux was decreased but anti-fouling property was significantly enhanced. Pure water flux with increasing molecular weights of the polymer was decreased and fouling resistance was enhanced. Also, Pure water flux with increasing solution concentration was decreased and fouling resistance was enhanced. It is probably due to the increase in hydrophilicity and decrease in roughness of the membrane surface, as revealed by contact angle and AFM analysis.

Fabrication of SOI Structures with Buried Cavities for Microsystems SDB and Electrochemical Etch-stop (SDB와 전기화학적 식각정지에 의한 마이크로 시스템용 매몰 공동을 갖는 SOI 구조의 제조)

  • Chung, Gwiy-Sang;Kang, Kyung-Doo;Choi, Sung-Kyu
    • Journal of Sensor Science and Technology
    • /
    • v.11 no.1
    • /
    • pp.54-59
    • /
    • 2002
  • This paper describes a new process technique for batch process of SOI(Si-on-Insulator) structures with buried cavities for MEMS(Micro Electro Mechanical System) applications by SDB(Si-wafer Direct Bonding) technology and electrochemical etch-stop. A low-cost electrochemical etch-stop method is used to control accurately the thickness of SOI. The cavities were made on the upper handling wafer by Si anisotropic etching. Two wafers are bonded with an intermediate insulating oxide layer. After high-temperature annealing($1000^{\circ}C$, 60 min), the SDB SOI structure with buried cavities was thinned by electrochemical etch-stop. The surface of the fabricated SDB SOI structure have more roughness that of lapping and polishing by mechanical method. This SDB SOI structure with buried cavities will provide a powerful and versatile substrate for novel microsensors arid microactuators.

Effect of Applied Current Density on the Corrosion Damage of Steel with Accelerated Electrochemical Test (전기화학적 가속 부식 평가법에서 강재의 부식 손상에 미치는 인가전류밀도의 영향)

  • Lee, Jung-Hyung;Park, Il-Cho;Park, Jae-Cheul;Kim, Seong-Jong
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.5
    • /
    • pp.423-430
    • /
    • 2016
  • In this study, we investigated the corrosion damage characteristics of steel for offshore wind turbine tower substructure using an accelerated electrochemical test. The galvanostatic corrosion test method was employed with a conventional 3 electrode cell in natural sea water, and the steel specimen was served as a working electrode to induce corrosion in an accelerated manner. Surface and cross-sectional image of the damaged area were obtained by optical microscope and scanning electron microscope. The weight of the specimens was measured to determine the gravimetric change before and after corrosion test. The result revealed that the steel tended to suffer uniform corrosion rather than localized corrosion due to active dissolution reaction under the constant current regime. With increasing galvanostatic current density, the damage depth and surface roughness of surface was increased, showing approximately 25 times difference in damage depth between the lowest current density ($1mA/cm^2$) and the highest current density ($200mA/cm^2$). The gravimetric observation showed that the weight loss was proportionally increased with increment of current density that has 75 times different according by experimental conditions. Consequently, uniform corrosion of the steel specimen was conveniently induced by the electrochemically accelerated corrosion technique, and it was possible to control the extent of the corrosion damage by varying the current density.

Micromorphometric change of implant surface conditioned with tetracycline-HCI : $FBR^{(R)}$ and CeliNest surface (표면처리 시간에 따른 임프란트 미세구조의 변화 : $FBR^{(R)}$과 CellNest 표면 임프란트)

  • Chang, Dong-Wook;Park, Joon-Bong;Kwon, Young-Hyuk;Herr, Yeek;Chung, Jong-Hyuk
    • Journal of Periodontal and Implant Science
    • /
    • v.36 no.3
    • /
    • pp.717-729
    • /
    • 2006
  • The present study was performed to evaluate the effect of tetracycline-BCL on the change of implant surface microstructure according to application time. Implant with pure titanium machined surface, double coated $FBR^{(R)}$ surface and oxidized CellNest surface were utilized. Implant surface was rubbed with $50mg/m{\ell}$ tetracycline-BCL solution for ${\frac{1}{2}}$, 1, $1{\frac{1}{2}}$, 2 and $2{\frac{1}{2}}$min. respectively in the test group. Then, specimens were processed for scanning electron microscopic observation. The results of this study were as follows. 1. Both test and control group showed a few shallow grooves and ridges in pure titanium machined surface implants. There were not significant differences between two groups. 2. The double coated $FBR^{(R)}$ surfaces showed fine crystalline structures. The roughness of surfaces conditioned with tetracycline-BCL was lessened relative to the application time. 3. The oxidized CellNest surfaces showed the porous structures. The surface conditioning with tetracycline-BCI influenced on its micro-morphology. In conclusion, the detoxification of the affected implant surface with $50mg/m{\ell}$ tetracycline-BCL should be applied respectively with different time according to various implant surfaces.

Micromorphometric change of implant surface conditioned with Tetracycline-HCl : HA and Etched surface (염산테트라싸이클린의 적용시간에 따른 특수 가공된 임프란트 표면 변화)

  • Han, Ju-Young;Park, Joon-Bong;Kwon, Young-Hyuk;Herr, Yeek;Chung, Jong-Hyuk
    • Journal of Periodontal and Implant Science
    • /
    • v.36 no.3
    • /
    • pp.731-744
    • /
    • 2006
  • The present study was performed to evaluate the effect of tetracycline-HCl on the change of implant surface microstructure according to application time. Implant with pure titanium machined surface, HA-coated surface and dual acid etched surface were utilized. Implant surface was rubbed with $50mg/m{\ell}$ tetracycline-HCL solution for ${\frac{1}{2}}$min., 1min., $1{\frac{1}{2}}$min., 2min., and $2{\frac{1}{2}}$min. respectively in the test group. Then, specimens were processed for scanning electron microscopic observation. The results of this study were as follows. 1. Both test and control group showed a few shallow grooves and ridges in pure titanium machined surface implants. There were not significant differences between two groups. 2. In HA-coated surfaces, round particles were deposited irregularly. The roughness of surfaces conditioned with tetracycline-HCL was lessened and the cracks were increased relative to the application time. 3. The etched surfaces showed the honey comb structures. The surface conditioning with tetracycline-HCI didn't influence on its micro-morphology. In conclusion, the detoxification with $50mg/m{\ell}$ tetracycline-HCI must be applied respectively with different time according to various implant surfaces.