• Title/Summary/Keyword: Rotordynamic analysis

Search Result 139, Processing Time 0.026 seconds

Leakage and Rotordynamic Analysis of Spiral-Grooved Pump Seal Based on Three-Control-Volume Theory (나선 홈 펌프 실의 누설 및 로터다이내믹 해석)

  • Ha, Tae-Woong;Lee, An-Sung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.6 no.1 s.18
    • /
    • pp.14-22
    • /
    • 2003
  • In this paper the leakage prediction md rotordynamic analysis of an annular seal with a smooth rotor and spiral-grooved stator is performed. For the development of a theoretical model, the three-control-volume analysis of the circumferentially-grooved seal is expanded by considering pressure reduction due to the pumping effect of spiral groove and pressurized flow through the spiral groove. Validation on the present analysis is achieved by comparisons with available experimental data. For the leakage prediction the present analysis generally shows a reasonable agreement with experimental results. Rotordynamic coefficients for rotor speed with spiral angles show same trend, but the magnitudes of rotordynamic coefficients yield differences between analysis and experimental results.

Rotordynamic Analysis for Stepped-Labyrinth Gas Seals Using Moodys Friction-Factor Model

  • Ha, Tae-Woong
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.9
    • /
    • pp.1217-1225
    • /
    • 2001
  • The governing equations are derived for the analysis of a stepped labyrinth gas seal generally used in high performance compressors, gas turbines, and steam turbines. The bulk-flow is assumed for a single cavity control volume set up in a stepped labyrinth cavity and the flow is assumed to be completely turbulent in the circumferential direction. The Moodys wall-friction-factor model is used for the calculation of wall shear stresses in the single cavity control volume. For the reaction force developed by the stepped labyrinth gas seal, linearized zeroth-order and first-order perturbation equations are developed for small motion about a centered position. Integration of the resultant first-order pressure distribution along and around the seal defines the rotordynamic coefficients of the stepped labyrinth gas seal. The resulting leakage and rotordynamic characteristics of the stepped labyrinth gas seal are presented and compared with Scharrers theoretical analysis using Blasius wall-friction-factor model. The present analysis shows a good qualitative agreement of leakage characteristics with Scharrers analysis, but underpredicts by about 20%. For the rotordynamic coefficients, the present analysis generally yields smaller predictied values compared with Scharrers analysis.

  • PDF

Prediction of Rotordynamic Coefficients for High-Performance-Pump Seal Using CFD Analysis (CFD를 사용한 고성능 펌프 실의 동특성 계수 예측)

  • Choe, Bok-Seong;Ha, Tae-Woong
    • Tribology and Lubricants
    • /
    • v.26 no.1
    • /
    • pp.37-43
    • /
    • 2010
  • Precise prediction of rotordynamic coefficients for annular type seal of turbomachinery is necessary for enhancing their vibrational stability and various prediction methods have been developed. As the seal passage is designed complicatedly, the analysis based on Bulk-flow concept which has been mainly used in predicting seal dynamics is limited. In order to improve the seal rotordynamic prediction, full Navier-Stokes Equations with turbulent model derived in the seal flow passage have to be solved. In this study, 3D CFD(Computational Fluid Dynamics) analysis has been performed for predicting rotordynamic coefficients of non-contact type annular plain seal using FLUENT. Comparing with the results of Bulk-flow model analysis, the result of 3D CFD analysis shows good agreement.

Rotordynamic Analysis of Compressor Labyrinth Seals (압축기용 라비린스 실의 동특성 해석)

  • 하태웅;이안성
    • Journal of KSNVE
    • /
    • v.8 no.5
    • /
    • pp.849-855
    • /
    • 1998
  • An analysis of lateral hydrodynamic forces of compressor labyrinth seals is presented. Basic equations are derived using a two-control-volume model for compressible flow. Blasius' wall friction-factor formula and jet flow theory are used for the calculaton of wall shear stresses and recirculation velocity in the cavity. Linearized zeroth-order and first-order perturbation equations are developed for a small motion about the centered position by expansion in the eccentricity ratio. Integraton of the resultant first-order pressure distribution over the seal defines the rotordynamic coefficients. As an application a rotordynamic analysis of the balance drum labyrinth seal found in an ethylene regrigeration copmressor is carried out. The rotordynamic characteristic results of the labyrinth seal are presented and compared with other types of seals, honeycomb seal and smooth seal.

  • PDF

Rotordynamic Analysis of See-through-type Labyrinth Seal Using 3D CFD (3D CFD를 활용한 관통 래버린스 실의 회전체 동역학적 해석)

  • Ha, Tae Woong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.1
    • /
    • pp.44-50
    • /
    • 2015
  • Labyrinth seals are commonly used in various kinds of turbomachinery to reduce leakage flow. In the present 3D CFD analysis of see-through-type labyrinth air seal, the methodology of determining leakage and rotordynamic coefficients is suggested with the relative coordinate system for steady-state simulation. The leakage flow and rotordynamic forces predicted by using different solvers and turbulent models of FLUENT are compared with the results of the existing bulk-flow analysis code LABYSEAL.FOR and experiment. The present CFD result of direct stiffness(K) shows only improvement in prediction. The results of leakage and rotordynamic coefficients as well as computing time are sensitive against the used solver and turbulent model.

Rotordynamic Analysis of a Labyrinth Seal Using the Moody's Friction-Factor Model (Moody 마찰계수식을 사용한 래버린스 실의 회전체 동역학적 해석)

  • Ha, Tae Woong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.2 no.3 s.4
    • /
    • pp.52-58
    • /
    • 1999
  • The leakage and rotordynamic coefficients of see-through type gas labyrinth seals are determined using a two-control-volume-model analysis with Moody's wall-friction-factor formula which is defined with a large range of Reynolds number and relative roughness. Jet flow theory are used for the calculation of the recirculation velocity in the cavity. For the reaction force from the labyrinth seal, linearized zeroth-order and the first-order perturbation equations are developed for small motion about a centered position. The leakage and rotordynamic coefficient results of the present analysis are compared with Scharrer's theoretical analysis using Blasius' wall-friction-factor formula and Pelletti's experimental results. The comparison shows that the present analysis using Moody's wall-friction-factor formula and Scharrer's theoretical analysis using Blasius' wall-friction-factor formula give the same results for a smooth seal surface and the range of Reynolds number less than $10^5$.

  • PDF

A Rotordynamic Analysis of Circumferentially-Grooved Pump Seals Based on a Three-Control-Volume Theory

  • Ha, Tae-Woong;Lee, An-Sung
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.261-271
    • /
    • 2000
  • In this paper the leakage prediction and rotordynamic analysis of an annular seal with a smooth rotor and circumferentially grooved stator are performed based on a three-controlvolume theory. The present analysis is validated by comparing with the experimental data of Iwatsubo and Sheng and theoretical results suggested by Marquette and Childs. For the leakage prediction the present analysis shows a good agreement with Marquette and Childs' result and a qualitation agreement with Iwatsubo and Shengs' experimental data. Direct and cross-coupled stiffness coefficients show closer agreement with the experimental values than those of Marquette and Childs. However, direct damping coefficient shows greater discrepancy from the experimental value than Marquette and Childs'.

  • PDF

Leakage and Rotordynamic Analysis of Damper Floating Ring Seal with Round­Hole Surfaces in the High Pressure Turbo Pump (원형 단면 구멍 표면을 갖는 댐퍼 후로팅 링 실의 누설량 및 회전체 동역학적 특성 해석)

  • 하태웅;이용복;김창호
    • Tribology and Lubricants
    • /
    • v.19 no.6
    • /
    • pp.349-356
    • /
    • 2003
  • A damper floating ring seal with round hole pattern surfaces is suggested for better leakage control. The flat plate test of the round hole pattern surfaces has been performed to yield an empirical friction factor model. The exact predictions of the lock­up position of the damper floating ring, the leakage performance, and the rotordynamic coefficients of the seal are necessary to evaluate the rotordynamic performance of the turbo pump unit. The governing equations including the empirical friction factor model for round hole pattern surfaces are solved by the Fast Fourier Transform method. The lock­up position, leakage flow rate, and rotordynamic coefficients are evaluated according to the geometric parameters of the damper floating ring seal. Theoretical results show that the damper floating ring seals yield less leakage and better rotordynamic stability than the floating ring seal with a smooth surface.

A Rotordynamic Analysis of a Industrial Centrifuge for Vibration Reduction (산업용 원심분리기의 진동저감을 위한 로터다이나믹 해석)

  • Kim, Byung-Ok;Lee, An-Sung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.8
    • /
    • pp.879-885
    • /
    • 2008
  • A rotordynamic analysis was performed with a decant-type centrifuge, which is a kind of industrial centrifuge. The system is composed of screw rotor, bowl rotor, driving motors, gear box, and support rolling element bearings. These rotors have a rated speed of 4300 rpm, and were modeled utilizing a rotordynamic FE method for analysis, which was verified through 3-D FE analysis. Design goals are to achieve wide separation margins of lateral critical speeds, and favorable unbalance responses of the rotor in the operating range. Then, a complex analysis rotordynamic analysis of the system was carried out to evaluate its forward synchronous critical speeds and mode shapes, whirl natural frequencies, and unbalance responses under various balance grade. As a result of analysis, the rotordynamic analysis performed by separating a screw rotor and bowl rotor may cause an error in predicting critical speed of entire system. Therefore, the rotordynamic analysis of a coupled rotor combining a screw and bowl rotor must be performed in order to more accurately estimate dynamic characteristics of the decanter-type centrifuge as presented in this paper. Also, rolling element bearings with suitable stiffness should be selected to keep enough separation margin. In addition, in establishing balance grade of a screw and bowl rotor, ISO G2.5 balance grade is more recommended than ISO G6.3, in particular balancing correction of a screw rotor based on ISO G2.5 grade is strongly recommended.

Rotordynamic Model Development with Consideration of Rotor Core Laminations for 2.2 kW-Class Squirrel-Cage Type Induction Motors and Influence Investigation of Bearing Clearance (2.2 kW급 유도전동기의 회전자 적층구조를 고려한 회전체 동역학 해석모델 개발 및 베어링 간극의 영향 분석)

  • Park, Jisu;Sim, Kyuho;Lee, Sung-Ho
    • Tribology and Lubricants
    • /
    • v.35 no.3
    • /
    • pp.158-168
    • /
    • 2019
  • This paper presents the investigation of two types of rotordynamic modeling issues for 2.2 kW-class, rated speed of 1,800 rpm, squirrel-cage type induction motors. These issues include the lamination structure of rotor cores, and the radial clearance of ball bearings that support the shaft of the motor. Firstly, we focus on identifying the effects of rotor core lamination on the rotordynamic analysis via a 2D prediction model. The influence of lamination is considered as the change in the elastic modulus of the rotor core, which is determined by a modification factor ranging from 0 to 1.0. The analysis results show that the unbalanced response of the rotor-bearing system significantly varies depending on the value of the modification factor. Through modal testing of the system, the modification factor of 0.079 is proven to be appropriate to consider the effects of lamination. Next, we investigate the influence of ball bearing clearance on the rotordynamic analysis by establishing a bearing analysis model based on Hertz's contact theory. The analysis results indicate that negative clearance greatly changes the bearing static behavior. Rotordynamic analysis using predicted bearing stiffness with various clearances from -0.005 mm to 0.010 mm reveals that variations in clearance result in a slight difference in the displacement of the system up to 18.18. Thus, considering lamination in rotordynamic analysis is necessary as it can cause serious analysis errors in unbalanced response. However, considering the effect of the bearing clearance is optional because of its relatively weak impact.